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Chapter 3

ELASTICITY AND MODELING

3.1 INTRODUCTION

As mentioned in the previous Chapter, soil mechanics along with all other
branches of mechanics of solids requires the consideration of geometry or compati-
bility and of equilibrium or dynamics. The essential set of equations that differenti-
ate the soil from other solids is the relation between stress and strain. The behavior
of soils is very complicated. Therefore, any attempt to incorporate various features
of soil properties in a single mathematical model is not likely to be successful. Even
if such a model could be constructed, it would be far too complex to serve as the
basis for the solution of practical geotechnical engineering problems. Simplifications
and idealizations are essential in order to produce simpler models that can represent
those properties that are essential to the considered problem. Thus, any such simpler
models should not be expected to be valid over a wide range of conditions.

With the present state of development of computer programs, such simple but
inadequate material models are often one of the major factors in limiting the
capability of stress analysis. This 1s especially true in soil mechanics where generally
accepted constitutive relations for soils under triaxial states of stress do not exist.
Nevertheless, there exists a large variety of models which have been proposed in
recent years to characterize the stress-strain and failure behavior of soil medium. All
these models have certain inherent advantages and limitations which depend to a
large degree on their particular application.

This book attempts to evaluate critically these existing soil constitutive relations
in general and plasticity models in particular, within the context of their use in the
numerical analysis of geotechnical engineering problems, to determine the range of
applicability, relative merits, and limitations and to identify the specific need for
further modifications and developments.

The evaluation of these models is in general based on the following three
considerations:

1. Theoretical evaluation of the models with respect to the basic principles of
continuum mechanics to ascertain their consistency with the theoretical require-
ments of continuity, stability and uniqueness.

2. Experimental evaluation of the models with respect to their suitability to fit
experimental data from a variety of available test, and the ease of the determina-
tion of the material parameters from standard test data.

3. Numerical and computational evaluation of the models with respect to the
facility with which they can be implemented in computer calculations. Particular
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emphasis will be placed on the implementation of these models in nonlinear

incremental finite-element computer codes for obtaining solutions of geotechni-

cal problems under general stress conditions including monotonic as well as
cyclic loadings.

The basis of model evaluation described above will provide the balance between
the requirements of rigor from the continuum mechanics viewpoint, the require-
ments of realistic representation of soil behavior from the experimental-testing
viewpoint, as well as the requirements for simplicity in application from the
computation viewpoint.

The scope covered in this book is limited to time-independent soil models based
on the continuum mechanics approach. Specifically, various types of geotechnical
material models based on the theories of elasticity and plasticity are considered.

In this Chapter, various elasticity-based material models are reviewed briefly with
respect to their advantages and limitations when they are applied to numerical stress
analyses in geotechnical problems. Subsequently, their stress-strain relations are
presented in some details for a direct use in finite-element applications.

3.2 ELASTIC MODELS IN GEOTECHNICAL ENGINEERING

Elastic material models based on the theory of continuum mechanics can be
generally classified as linear elastic (generalized Hooke's law), Cauchy elastic.
hyperelastic, and hypoelastic models. These models are described briefly in what
follows.

3.2.1 Linear elastic model (generalized Hooke's law)

The linear elastic model is the oldest and simplest model which gives a unique
and linear relation between the state of stress and strain, and it can be classified
further as isotropic, transversely isotropic, orthotropic or anisotropic depending on
the materials assumed in the analysis (see Section 3.4). The most general form of
linear stress-strain relations for an elastic material can be represented by the
generalized Hooke's law as:

Uf_j=ij+ Cr}AIGA/ (3,1)

where B, are components of initial stress tensor corresponding to the initial strain
free state and C, ;, is a fourth-order tensor of elastic material constants. As implied
by the elastic description in Chapter 1, materials described by this relation return to
their original undeformed configuration upon unloading. Thus, this type of linear
relationship has a very limited range of applicability to geological materials.

For the stress level not very different from the in situ condition, and significantly
below failure, stress distributions and immediate settlements may be predicted by

this elastic procedure. However, the limitation of this model is that a proper
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selection of the elastic moduli is not an obvious one. A reasonable solution in an
analysis with this model depends to a large extent on the experience of the user. To
overcome the material nonlinearity. a simple modification of the linear elastic model
to a piecewise linear elastic model may be considered. This modification assumes
that the stress-strain curve can be represented by a piecewise linear relationship. As
a result, the conventional linear elastic model is modified with different material
constants for each linear interval. Because of its simplicity, the linear elastic model
has formed the basis of various nonlinear elastic stress-strain relations used in
engineering practice.

3.2.2 Cauchy elastic model

For a Cauchy elastic material, the current state of stress. ,,, depends only on the

current state of deformation, €, ; that is, stress is a function of strain (or vice versa).
The constitutive relation of this material has the general form:
UI_jZ’F;}(EI’\.’) (3'2)
where F,, is the elastic response function of the material. The elastic response
function F}, for an isotropic material, for example, can be expressed in a polynomial
form of the strain tensor €, . that is:

F,=a, +a€,; +ax,e;+ageqe,+ ... (3.3)

where a,, a,, d,. ds, ... are coefficients. Employing the Cayley-Hamilton Theorem
which implies that any second-order tensor satisfies its own characteristic equation
[see Eq. (2.29)], Eq. (3.2) can therefore be reduced to:

Uf,onau+A1€U+A25:k€f\; (3.4)

where A,, A,, and A, are elastic response coefficients which are polynomial
functions of strain invariants, I,, I, and I;. Alternatively, the strain tensor €, can
be expressed in terms of the stress tensor o, ,, that is:

€U=B[,8U+ Byo;, + Byo,0,, (3.5)

where B,, B,. and B, are elastic response coefficients which are polynomial
functions of stress invariants, I,, I,, and 1. Using the transformation law of a
second-order tensor, it can be shown that Eq. (3.4) or Eq. (3.5) is of form invariant
with respect to rigid motion of a spatial coordinate system, i.c.:

Gj {od,,0 :A()lm;[;usu+Al‘{nu! € +A3“’m:lnjﬁt.fxel\,r

mn T tmutng ey njpvig

’
nim

= AUSI:HI + AEEJ,H.‘ZE;(H (3'6)

+ A€
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e =1 I .= Byl 1, 8+ Bl 0.4 Bl 1l a0

nu nutn gty nitn g mta g mttag

= B,8.,+ B0, + Byo,,0/, (3.7)
X /. 1s referred to the primed (rotated) coordinate system.

The behavior of such models described above is both reversible and path-inde-
pendent in the sense that stresses are uniquely determined by the current state of
strain (or vice versa). In general. although stresses are uniquely determined from
strains (or vice versa), the converse is not necessarily true. Furthermore. reversibility
and path-independency of the strain energy and complementary energy density
functions, W(e,,) and £(o,,) respectively, are not generally guaranteed. In fact, the
Cauchy type of elastic models may generate energy for certain loading-unloading
cycles (see, for example, Chen and Saleeb, 1982). That is, the model may violate the
law of thermodynamics, which is not acceptable on physical grounds. This has led
to the consideration of the secant type of formulation (for example, hyperelastic
model ) discussed 1n the next Section.

In spite of these theoretical reservations, some simplified versions of nonlinear
Cauchy elastic constitutive models have been proposed for practical use in soil
mechanics. For example, the simplest approach to formulate such nonlinear models
is to simply replace the elastic constant in the linear stress-strain relations with
secant moduli dependent on the stress and /or strain invariant. Nonlinear models of
this type have been discussed in the papers by Boyce. 1980; Girijavallabhan and
Reese, 1968: Hardin and Drnevich, 1972; and Katona ct al., 1976; among others.
These models are mathematically and conceptually very simple. The models account
for two of the main characteristics of soil behavior; nonfinearity and the dependence
on the hydrostatic stress.

The main disadvantage of the models is that they describe a path-independent
behavior. Therefore, their applications are primarily directed toward monotonic or
proportional loading regimes. For arbitrarily assumed functions for the secant

where ¢’ or ¢

TABLE 3.1

Modifications of Cauchy elastic models

Advanlages Limitations
— conceptually and mathematically — path-independent, reversible
simple
— no coupling between volumetric and
— easy to determine the constants deviatoric responses
and wide data base is established
for many parameters — for arbitrary functions of the

moduli, energy generation may occur
in certain stress cycles
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moduli, there is no guarantee that the energy functions W and £ will be path-inde-
pendent and energy generation may occur in certain stress cycles, which is physi-
cally not acceptable.

The advantages and limitations of Cauchy elastic models based on modifications
of the linear elasticity are summarized in Table 3.1.

3.2.3 Hyperelastic model

To the contrary of the engineering or empirical approach described in previous
Section, the classical hyperelastic model, which will not generate energy over any
load-unload stress cycles, provides a more rational approach in formulating secant
stress-strain relations for soils.

The development of constitutive equation for this type of material is based on
Green’s method which employs the two fundamental laws of mechanics: the first law
of thermodynamics and the law of kinetic energy. Therefore, the hyperelastic model
is sometimes called Green elastic model which assumes, to begin with, the existence
of a strain energy density function W, or a complementary encrgy density function £.

The first law of thermodynamics can be expressed in mathematical form:

SW.+ 80 =8T +8U (3.8)
where 8, is a change in work done onto the system by external agency. 80 a
change in heat flow into the system, 87 a change in kinetic energy, 8U a change in

internal energy.
On the other hand, the law of kinetic energy can be written as:

W, + W, =8T (3.9)

where 8W, is a change in work done inside the system by internal agency.

Substitution of W, = 8T — 8W, from Eq. (3.9) into Eq. (3.8) leads to:

SW, =80 —8U (3.10)
If we assume that the heat flow SQ is zero, we have:

SW, = —8U (3.11)
Considering the case that a material with volume V" and surface area S undergoes

an infinitesimal displacement 8u,, the variation in the work by the external traction
force T, =g, n, and body force F, can be expressed as:

6W5=]qu,n,8ul dS+fVE8u, av (3.12)
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where n, are directional cosines of the outward vector normal to the surface S.
Employmg the Divergence Theorem, the first term in Eq. (3.12) can be transformed
into a form for volume integral, that is:

.[SO;‘,HISMJ dS=fV(0},8u!),_,, dv = quH('O‘u,)., dr + qu”,jSu, dy (3.13)

where a subscript j after a comma represents a derivative with respect to the
coordinate axis x,. Substituting Eq. (3.13) into Eq. (3.12), we have:

am:f[aﬂ(au,),,Jr (0,.,+ F)du,|dv (3.14)

4

Since o,,,, + F, = 0 from the equilibrium condition, Eg. (3.14) becomes:

SW, = fo,,(ﬁu,),l ar (3.15)
oo

The infinitesimal displacement gradient (8u,),, can be written as:
(8u,)., = 3[(8u,)., + (8u).,] + 3[(8u),, = (8u,)..] (3.16)

where the first and second terms in Eq. (3.16) are respectively symmetric and
skew-symmetric tensors. Therefore, substitution of Eq. (3.16) into Eq. (3.15) yields:

oW, = f [(8u,).,+ (8u,).,]dV (3.17)

Using the strain-displacement relations in Eq. (2.90), Eq. (3.17) can be represented
as:

W, = fa 8, (3.18)

where 8¢, is a change in strain tensor ¢,,. From 80 =0 and the assumption that
8T=0 durmg an infinitesimal d]splauement Eq. (3.8) can be written as:

SW,=8U (3.19)

Denoting the internal energy per unit volume (internal energy density function or
strain energy density function) by W, 8U associated with the material volume V' can
be expressed as:

8U=f5WdV (3.20)
) v
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From Egs. (3.18), (3.19), and (3.20), we have:

[ o8¢, dv = Jawav (3.21)
v v

which leads to:

SW =o0,0¢,, (3.22)

Since the internal (or strain) energy density function W depends on the strain
components ¢, . the variation 8/ can be expressed in terms of Je, ;. i.e.:

aw
W = —d¢,, (3.23)

de,,

Comparing Egs. (3.22) and (3.23), the stress tensor g,, (= o0,,) is given by:
an

0, =" 3.24
" B (3.24)
Equation (3.24) is a basis for the Green elaslic model. For an isotropic material, the
strain energy density function W is a function of any three independent invariants
of strain tensor ¢, . If we choose the invariants given by:

I =¢, (3.25a)
I =le,¢, (3.25b)
f{ = %E{,’E}A‘ERI (325(,)
Equation (3.24) can be rewritten as:
aw oI, aw d,  ow aly

= — + — = — - 3.26
% afy de,; Al de;, Iy de, ( )
Since:
GY
e 8, (3.27a)
ol
ae, =, (3.27b)
al;
853 =€!I\£AI (327C)

7
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Equation (3.26) can thus be expressed as:

aw oW oW
6'-14‘8_[_?6”"' ﬁfiket"} (328)

i)

(¢

;,:5[_;

Equation (3.4) in the Cauchy formulation and Eq. (3.28) in the Green formulation
have the same form except the difference that the response coefficients A4, A,, and
A, in Eq. (3.4) are independent while the response coefficients aw /a1, W /35,
and 8W/0I] in Eq. (3.28) are dependent on each other under the following
integrability conditions:

3 [ oW 3 [ow

b e O 3.29a
Al ( al; ) ol (812’) ( )
3 [ow 3 [ow

i L 3.29b
ar; ( al ) ol (az;) ( )
3 aw)= 3 (aw (3.29)
ar;\ 81y ] oI\ a8l ‘

The Green type of constitutive equation can therefore be regarded as a special case
of the Cauchy lype of equation. Similarly, the counterpart of Eq. (3.28) can be
derived by assuming the existence of complementary energy density function £
which is a function of stress tensor g,,. Using the relationship:

W+R2=0, ¢ (3.30)

LS

and differentiating Eq. (3.30) with respect to o,,, we have:

a0 aw de,, do, aw \ de, Ao,

_—— —_—— + = —_— | = — .
oy, Boy, | Tdey, 90y, " \7T e, | B0y, T30, (#31)
Using Eq. (3.24), Eq. (3.31) reduces to:

e 8o,

= 332
do,, day, Y (3.32)
Since do,,/d0;,= 8,8, we finally have:

082 082

ek!—a_(]; or E,J—E (333)
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For an isotropic material, the complementary energy density function {2 is a
function of any three independent invariants of stress tensor. By taking the
following invariants such as:

I, =0, (3.34a)
7, =1o,0, (3.34b)
1_3 - .%Ui,lo_'jl’\o'kf (3'34C)

Eq. (3.33) can be expressed as:

9@ o1, ae oL, 9@ dl,

=+ = + = 3.35
5 dol, 90, 31, %0, 03I, 90, ( )
Since:

0,
g B 3.36:
P (3.36a)
o,
i, =0 (3.36h)
ar
50—,—1 =it (3.36¢)
Equation (3.35) can then be written as:

2
€, = GQS + La, +~BTQ 40 (3.37)

U T A 8172 J al,
Equation (3.37) has the same form as that of Eq. (3.5), except that the difference
between the characteristics of the response coefficients in Eq. (3.5) and Eq. (3.37). It
can be readily understood that similar integrability relations to Eq. (3.29) exist
among the response coefficients, 982/d1,, 302,/91,. and 3Q/01..

Based on any assumed functional relationship of W in terms of strain invariants,
or @ in terms of stress invariants. various nonlinear elastic stress-strain relations in
the form of secant formulation can be obtained from Eq. (3.28) or (3.37). Such
hyperelastic formulation yields a one-to-one relationship between the states of stress
and strain, i.e., reversibility and path-independency of stresses and strains. Note
that the stress tensor o, in Eq. (3.24) and strain tensor €,, in Eg. (3.33) are
respectively normal to the surfaces of strain energy density function W and
complementary energy density function £ (see normality condition in Section 3.3.4).
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On the other hand, differentiation of Egs. (3.24) and (3.33) results in the
incremental stress-strain relations given by:

22w

do,, = _ae,iﬁek!de” =H, ., deyy (3.38a)
9" Q2 ,

des= doy, = H, ,; doy, (3.38b)

Y do,, 00y,

where the symmetrical matrices of the components of the fourth-order tensors H, ;,
and H,,, are known mathematically as the Hessian matrices and are functions of
W and £, respectively (see Section 3.3.4).

From Eqs. (3.38a) and (3.38b), it is observed that tangent moduli are identical for
loading and unloading. Thus, the hyperelastic model yields a constitutive relation
which is incapable of describing material behavior with load history-dependence
and rate-dependence. Incremental formulation of hyperelasticity can exhibit strain-
or stress-induced anisotropy in the material. Material instability of this model occurs

when:
det|H, | =0 ordet|H =0 (3.39)

Despite its shortcomings, hyperelastic model has been utilized as nonlinear constitu-
tive relations for soils.

In the early applications of the finite-element method to soil mechanics prob-
lems, simplified forms of hyperelasticity were generated and used through a simple
extension of the linear theory of elasticity. Later. it is to assume strain- or
stress-dependent and coupled or uncoupled bulk and shear moduli and to construct
a secant constitutive relation for coupled or uncoupled volumetric and deviatoric
stresses and strains. A third-order model, based on the classical theory of hyperelas-
ticity, has been formulated by Evans and Pister (1966) and subsequently used by Ko
and Masson (1976), and Saleeb and Chen (1981) among others in soil mechanics.

The hyperelastic formulation can be quite accurate for soils strained in propor-
tional loading and may represent several characteristics associated with soil behav-
ior; nonlinearity, dilation, stress-induced anisotropy, and strain-softening. Moreover,
use of these models in such cases satisfies the rigorous theoretical requirements of
continuity, stability, uniqueness, and energy consideration of continuum mechanics,
as will be described in Section 3.3. However, as noted previously. models of the
hyperelastic type fail to identify the inelastic character of soil deformation because
of its path-independency that is the result of a one-to-one coordination between
stress and strain.

The main objection to the hyperelastic formulation is the complications involved
with the material constants. Even when initial isotropy is assumed, a nonlinear
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TABLE 3.2

Hyperelastic models

Advantages Limitations

- satisfy stability and uniqueness - path-independent, reversible

— shear-dilatancy, and effect of — difficult to fit and requires large
all stress invariants may be number of tests
included

— most models confined 1o small regions
— attractive from programming and of applications
computer economy points of view

hyperelastic model often contains too many material parameters. For instance, a
third-order hyperelastic model, in which the stress (or strain) components can be
represented by the third-order polynomial functions of strain (or stress) compo-
nents, requires 9 constants; while 14 constants are needed for the fifth-order
hyperelastic model. A large number of tests are generally required to determine
these constants, which limit the practical usefulness of the models.

The advantages and limitations of hyperelastic models are summarized in Table
3.2,

3.2.4 Hypoelastic model

An obvious shortcoming in both of the previous types of nonlinear elasticity
models is the path-independent behavior implied in the secant stress-strain formula-
tion, which is certainly not true for soils in general. A further improved description
of soil behavior is provided by the hypoelastic formulation in which the stress rate
can in general be represented by the material response function that is a function of
the current stress or strain state and strain rate., The general form of the constitutive
equation for this type of material is mathematically expressed as:

df‘,’ = E_,' ( - éiu’ ) (3 _40;_1)
Qr
(iu:F;j(enm’ ék.’) (3_40]})

where the dot indicates the rate of stress or strain.

As a special case of hypoelastic model, consider the stress-strain relation de-
scribed by Eq. (3.40a) in the following. It can be shown that the most general form
of the constitutive relations of Eq. (3.40a) which satisfies the isotropic conditions
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may be expressed by employing the Cayley-Hamilton Theorem as (e.g., Rivlin and
Ericksen, 1955):

G, = ayd,, + o€, + o€ €, + as0,, + ag0,0;, + ay (e,kcr“ e o,,\e,\_l)
+0‘6(5;A€MUU + ":Aeufu) + oy (G;AUMUJ, o+ U,AU:\,"-.{,)
+ aN(ErAEI\‘IU[inUnU + Olkokt’e!mem,l) (341)

where the response coefficients a,, @, ..., and ag are polynomial functions of the
invariants of ¢,, and o, and the following four joint invariants:

01=€,5, O =€,,0% (3.42a)
Q3 = épqéqrorp Q4 = épqéqrorsg.s'p (3 42b)

Assuming that the material is time-independent, we eliminate all terms in Eq.
(3.41) containing second and higher powers of ¢, so that Eq. (3.41) becomes
homogeneous in time. Therefore, the response coefficients a,, a«,. and ay must
vanish. On the other hand, the coefficients «;, as, and «, must be independent of
¢, and be functions of stress invariants alone while «,. as. and «, must be of
degree one in ¢,,. Imposing these restrictions on the response coefficients in Eq.
(3.41), we obtain:

U:; = a(]SU + alefj i 0.'301', s adotkokj =t aj(ﬁtko'f\j * UlAEA_,') + (!7(6”,\0“0'“ e Gif\gklf.’j)

(3.43)
where the response coeflicients a;. a;, and a, may be written as:
oy = B, T 51O+ 5,0, (3.44a)
ay = Baé,, + 8401 + B0 (3.44b)
oy = €, + B + BO> (3.44¢)

where, similar to the coefficients, «,. as. and a,. the response coefficients ;. .

.., and B are independent of ¢, and are functions of stress invariant alone.
Substitution of Eq. (3.44) into Eq. (3.43) leads to the incremental constitutive
equations given by the following form:

6;_1 = (B()éun + BIQI + BZQE)(SU + alé.n_,‘ + (BEénn T Ban & BSQ?_)U:;
+ (stémr + B?Ql + BRQZ) G{!\UAJ + as(éiAOAj + Ollcéi\_f)

+‘17(ézf;0k1“1, t U;Aoué.';) (3.45)
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Since each term in Eq. (3.45) contains a time derivative d/d¢, both sides of the
equation can be multiplied by d¢, resulting in the following form:

dGi] = (18() dE”” + 181 depq qp = 187 dE_ﬁq 1,-r 1_,':)6
+ (183 dE"” i+ B4 dE P pq + BS dcpqoqtofp)a

+ (Bﬁ de!l.’i Ed }87 depq P + BH depffoffrq'p) 1A0k_; + @) deﬁ,‘

+a5(dc,,\a,‘l + 0, dekj) + ay (delkck,cf‘, + 0,0, de,_j) (3.46)

where do,, and de,, are the stress and strain increment tensors, respectively.
Equation (3.46) is the most general form of incremental constitutive equation for
isotropic time-independent materials. The 12 response coefficients which are poly-
nomial functions of stress invariants can be determined by experiments and curve
and model fitting to the available test data. Equation (3.46) may be conveniently
written in the incrementally linear form given by:

da:j - CI_;A."(UHW) dEkI (347)

where C,,, is often called the tangential stiffness tensor of the material. The most
general form of C,,; which satisfies the condition of material isotropy may be
written as:

C:jk.f = A181‘/8M + A?_ (éfkafi + 8};'\811‘) + A3U:_j6kt’ + AASt_jUAI

+A5(61A 1'+ 61.’ A =k S;A(rn’ + 6‘;0‘,;\) +A SIJGAm m.’+ A SAIGUH ny

+A (a Y 117 Tt + 61.’ I Ay + a G nmi T (S’,‘,O'“” mk ) + A901_101;[ o Al()gugn" Ol
+A1]Gmi r):jokl+ APUUN mjo.ln nt (348)
in which the 12 material coefficients 4,, A4,, .... and 4,, depend only on the

invariants of the stress tensor a,,

The inverse constitutive form of Eq. (3.47) is usually written as:
dGU,‘: {'lp'\;,( HHJ) dcrn'\n' (3‘49)
where D, ,, is the tangential compliance tensor which is a function of the stress
tensor o,, in the same manner as that of C, ;, in Eq. (3.47).

These incremental stress-strain relations provide a natural mathematical model
for materials with limited memory. This can be seen by an integration of Eq. (3.47):

_f CUAI( nn deAI+U:(; (350)
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where o)) indicates the initial stress state. The integral expression clearly indicates
the path-dependency and irreversibility of the process. The hypoelastic response is
therefore stress history(path)-dependent. In the linear case for which C, ;,(g,,,) is
constant, the hypoelasticity degenerates to the Cauchy type of elasticity, which
corresponds to the history-independent secant modulus formulation. The integra-
tion in Eq. (3.50) can be carried out explicitly and leads to the Cauchy elastic
formulation.

As observed from Eq. (3.47), the tangential stiffness is identical in loading and
unloading. This reversibility requirement only in the infinitesimal (or incremental)
sense justifies the use of the term hypoelastic or minimum elastic. Material instabil-
ity or failure occurs when:

df.’,t ‘ C:_,'M(Umn) ‘ =0 (351)

Equation (3.51) leads to an eigenvalue problem of which the eigenvectors span a
surface, the failure surface, in the stress space.

There are two problems associated with the hypoelasticity modeling. The first
problem is that, in the nonlinear range, the hypoelasticity-based models exhibt
stress-induced anisotropy. This anisotropy implies that the principal axes of stress
and strain are different, introducing coupling effect between normal stresses and
shear strains. As a result, a total of 21 material moduli for general triaxial
conditions have to be defined for every point of the material loading path. This is a
difficult task for paractical application.

The second problem is that, under the uniaxial stress condition, the definition of
loading and unloading is clear. However, under multiaxial stress conditions, the
hypoelastic formulation provides no clear criterion for loading or unloading. Thus. a
loading in shear may be accompanied by an unloading in some of the normal stress
components. Therefore, additional assumptions are needed for defining loading-un-
loading criterion.

In the simplest class of hypoelastic models, the incremental stress-strain relations
are formulated directly as a simple extension of the isotropic linear elastic model
with the elastic constants replaced by variable tangential moduli which are taken to
be functions of the stress and /or strain invariants. A particularly popular hypoelas-
tic model is the Duncan-Chang model (Duncan and Chang, 1970; Duncan, 1981),
among others (Kondner, 1963; Kulhawy et al., 1969). The Duncan-Chang model
represents a simplification of Eq. (3.40) in that the material stiffness is incrementally
isotropic with stress-dependent moduli. The moduli are described as parabolic
functions of stress level. Failure is implied when these moduli approach zero.
Models of this type are attractive from both computational and practical view-
points. They are well suited for implementation of finite-element computer codes.
The material parameters involved in the models can be easily determined from
standard laboratory tests using well defined procedures; and many of these parame-
ters have a broad data base.

The early incremental finite-element analyses were conducted with these sim-
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plified forms of hypoelasticity. In the simplest approach, the incremental constitu-
tive model is based on an isotropic formulation using test data from a single
parameter load set-up, resulting in, for example, a stress- or strain-dependent
modulus of elasticity. To this end, three classes of formulations have emerged:
hyperbolic, parabolic, and exponential relations. In spite of the theoretical reserva-
tions against isotropic modeling with identical moduli in the principal directions
and no coupling with the shear response, the hyperbolic type of models and their
generalizations have been applied extensively in the past and used successfully in
the finite-element solution of nonlinear soil mechanics problems (see Chen and
Saleeb, 1982).

A more sophisticated model is based on the decoupling of volumetric and
deviatoric stress and strain with two parameters. In this case, the nonlinear
deformation model is developed on the basis of an isotropic formulation with
variable bulk moduli and shear moduli.

The application of this type of hypoelasticity models should be confined to
monotonic loading situations which do not basically differ from the experimental
tests from which the material constants were determined or curve fitted. Thus, the
isotropic models should not be used in cases such as nonhomogeneous stress states,
nonproportional loading paths or cyclic loadings.

TABLE 3.3

Hypoelastic models

Advantages Limitations

Moadification of the linear elustic madels

_ conceptually and mathematically simple — incrementally reversible

— suitable for finite element implementation — no coupling between volumetric and

deviatoric responses
— easy lo fit
- when G, and K are used, the behavior
— many of the parameters have near failure can not he described adequately
wide data base
- possible energy generation for
— have been used successfully cerlain stress cycles if arbitrary
in many practical applications functions for the moduli are used

First-order Iypoelastic models
— siress-path dependency — incrementally reversible

— stress-induced anisotropy — tangent stiffness matrix is
generally unsymmetric; thus requires
increased storage and computation

— difficult 1o fit and requires large number of tests
_ possible energy generation for certain stress cycles

— no uniqueness proof in general
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Examples of the classical formulations and applications of the first-order hypo-
elastic models can be found in the papers by Coon and Evans (1972). Desai (1980),
Davis and Mullenger (1979), and Tokuoka (1971). Again, as for the hyperelastic
models, the practical usefulness of the hypoelastic models is limiled by the nature
and number of tests required to determine the material constants. There is no
unique way to determine these constants. Also, as has been shown in the thesis
(Saleeb, 1981), the material tangential stiffness matrix for a hypoelastic model is
generally unsymmetric which results in a considerable increase in both storage and
computational time. Further, in such cases, uniqueness of the solution of boundary
value problems can not generally be assured.

The advantages and limitations for two of hypoelastic models are summarized in
Table 3.3.

3.3 UNIQUENESS. STABILITY, NORMALITY, AND CONVEXITY FOR ELASTIC MATERIALS

It is a desirable feature for a boundary-value problem that any mathematical
theory describing the mechanical behavior of materials provides strongly a unigue
solution which exhibits szable equilibrium configurations. These characteristics are
generally Lo be expected for most actual physical problems. However. it must be
recognized that if the real body deforms in a nonunique manner, Or assumes
unstable equilibrium configurations, no amount of mathematical modeling on
materials can compel it to do otherwise.

In this Section, the uniqueness and stability requirements for solutions together
with their implications for elastic materials are discussed.

3.3.1 Unigueness

Let us consider an elastic material body with volume ¥ and surface area 4. The
part of the surface area where surface tractions are prescribed is denoted by A+, and
that where surface displacements are prescribed is denoted by A, (see Fig. 2.16).
When the body forces, F;, and the surface forces, 7,. act upon the body. the
resulting stresses. strains, and displacements are given by ¢, €, . and u,, respec-
tively. Now assume that we further impose small changes of the applied forces and
displacements denoted by the increments d7; on A, dF in V, and du, on A,. For
this case, it is important to investigate whether the resulting stress and strain
increments do,, and de, ,, respectively, are determined uniquely by the increments of
the applied forces and displacements d7,. d £, and du,. If it is not, there must then
exist at least two different solutions corresponding to the applied changes d7,. d £,
and du,. Let two solutions be respectively solution (a) with increments do). de;,
and solution (b) with increments do). de). '

Each of these solutions must satisfy the equilibrium and compatibility (or
geometry) requirements. For solution (a), d7,. dF,. and do/, constitute an equi-
Jibrium set. whereas du, and de?, represent a compatible set. Similarly. the set d7,,
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dF, and do!, is statically admissible and the set du, and de;, is kinematically
admissible, for solution (b). Because of the linearity of the equilibrium equations
(2.88), the difference between the two statically admissible sets of solutions (a) and
(b) is also statically admissible; that is, the stresses (do;, — dof;), corresponding to
zero surface forces on A4 and zero body forces in V, constitute an equilibrium set.
Similarly, because of the linearity of the strain-displacement relations, Eq. (2.90),
the strains (de?, — de?,), and the displacements (du} — du}), which are zero on A,
are kinematically admissible, and therefore constitute a compatible sel. Applying
the principle of virtual work to these two “difference” sets, we obtain:

s fV(de) —do))(de}, — del)) aV (3.52)

since (d7*—d7T,")=0on A, (du®—dul)=0o0n 4,, and (dF*—dF")=0in V.

If it can be shown that the integrand in Eq. (3.52) is positive definite, uniqueness
is proved. As an example, let us consider the case of a linear hyperelastic (first-order
hyperelastic) material body. If the “difference” states of stress and strain are
denoted respectively by:

do/,=do}, —do}) (3.53a)
de;; = de!; — dej, (3.53b)

then the incremental constitutive relation gives:

do, = C, ;i dej, (3.54)
where the components of symmerrical elastic response tensor C,j“ are constants.
Substitution of above relation into Eq. (3.52) leads to:

fC,,M dej, del, dV=0 (3.55)
5

The integrand in Eq. (3.55) is a positive definite quadratic form since the determi-
nant of the elastic response coefficients in the tensor C,,, is always positive, as will
be seen in Section 3.3.4. Hence, the integral in Eq. (3.55) is zero only if de;, = 0; that
is, de!, = def,. Furthermore, it follows from the constitutive relation of Eq. (3.54)
that de;, =0; that is dg/) = da,‘;. Thus, uniqueness is proved for this kind of
material, and either do,, or de,, can have a unique value at each point of the body.

For different classes of nonlinear elastic materials described in the preceding
Section, additional restrictions must be considered in order to establish the proof of
positive definiteness of the integrand in Eq. (3.52). This leads to a consideration of
Drucker’s material stability postulate (Drucker, 1951), to be discussed in the next
Section. As will be seen, this postulate provides sufficient conditions for uniqueness
proof (see Example 3.1).
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3.3.2 Drucker’s stability postulate

Let us consider a material body with volume ¥ and surface area A, as shown in
Fig. 3.1a. The applied surface and body forces are denoted by T, and F, respec-
tively. The corresponding induced displacements, stresses, and strains are denoted
by u,, 0,,, and €, respectively. This existing set of forces, stresses, displacements,
and strains satisfies both equilibrium and compatibility (or geometry) conditions.

We shall consider next an external agency which is entirely distinct from the
agency that causes the existing states of stress o, and strain €,,. This external
agency applies additional surface and body forces, d7, and d F,. which cause the
additional set of stress increments do,,, strain increments de, . and displacement
increments du,. to the body as illustrated in Fig. 3.1b.

Definition of a stable material is followed by conditions which are known as
Drucker’s stability postulates (Drucker, 1951):

1. The work done by the external agency during the application of the added set of
forces on the changes in displacements it produces is positive.

2. The net work performed by rhe external agency over the eyele of application and
removal of the added set of forces and the changes in displacements it produces
is nonnegative.

It should be noted here that the work referred to is only the work done by the added

set of forces d7, and d F, on the “change” in displacements du, it produces. not the

total forces on du,. Mathematically. the following two stability requirements can be
specified:

de, du, dA +de, du, dV>0 (3.56)
A ¥
Sﬁdx du, d4 +9‘SdF, du, dV =0 (3.57)
A I
Ti #* dTi
Ti
Wi B uptduy, oy +day, € de;
(a) ()

Fig. 3.1. External agency and Drucker’s stability postulate. (a) Existing system. (b) Existing system and
exlernal agency.
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in which ¢ indicates integration over a cycle of addition and removal of the
additional set of forces and stresses.

The first postulate, Eq. (3.56), is called stability in small, while the second one.
Eq. (3.57), is termed stability in cycle. Note that these stability requirements are
more restrictive than the laws of thermodynamics, which require only that the work
done by the total (existing) forces F, and 7, on du, be nonnegative.

Employing the principle of virtual work to the “added” equilibrium set. d . dT,.
and dg,,, and the corresponding compatible set, du, and de, . the stability condi-
tions in Eqgs. (3.56) and (3.57) can be reduced to the following inequalities (F 1s an
arbitrary volume of body considered):

Stability in small
do,, de,, >0 (3.58)

Stability in cycle

9SdaU de, =0 (3.59)

3.3.3 Existence of Wand &

According to Drucker's postulate. useful net energy can not be extracted from
the material and the system of forces acting upon it in a cycle of application and
removal of the added set of forces and displacements. Furthermore. energy must be
put in if only irrecoverable (permanent or plastic) deformation is to take place. For
elastic materials, all deformations are recoverable and stability condition requires
that the work done by the external agency in such a cycle be zero; that is. the
integral of inequality in Eq. (3.59) is always zero for elastic materials. It can be
shown that this provides a necessary and sufficient condition for the existence of
strain energy and complementary energy density functions, W and {2, respectively.

For example, let the existing states of stress and strain in an elastic material body
be o7 and €, respectively. We consider a case that an external agency which
applies and then releases an additional set of stresses to the existing state of stress.
For an elastic material, when the stress state returns back to the original state o,7.
the strain slate also returns to €. Over such a cycle the second postulate in Eq.

(3.59) requires:
P(o,— o) de, =0 (3.60)

since no permanent (or plastic) strains have occurred. Choosing the initial existing
state to be both stress and strain free, we find:

950,‘,. de,, =0 (3.61)
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which must be true irrespective of the path followed during the cycle. This implies
that integrand in Eq. (3.61) must be an exact (or perfect) differential. This naturally
suggests the consideration of the elastic strain energy density [unction, W, written as
a function of strains alone, such that:

€ oW
W(Eu)=f0 o, de,, and g;;= GTU
These are the same relations derived previously for hyperelastic materials in Section
3.2.3.

Similarly, without providing a detailed argument, it can be shown that the second
stability postulate (3.59) leads to the existence of the elastic complementary energy
density, {2, as a function of stresses alone; as also given previously.

Not only does the second stability postulate assure the existence of W and £,
but, as will be seen in Example 3.1, the first postulate also guarantees that for any
elastic constitutive model based on an assumed function for W (ot £). a wunique
inverse constitutive relation can always be obtained.

The close relation between the stability postulate and the existence of a unique
inverse of the stress-strain relation can best be illustrated by considering the
symbolic uniaxial o-e curves in Fig. 3.2. For cases (a) to (c) in this figure, the stress
o is uniquely determined from the strain €, and the converse is also true. An
additional stress do > 0 gives rise to an additional strain de > 0, with the product
dade > 0. That is, the additional stress do does positive work which is represented
by the shaded triangles in the diagrams. Behaviors of this kind are stable in
Drucker’s sense.

In case (d), the deformation curve has a descending branch, where the strain
increases as stress decreases. Although the stress o is uniquely determined from the
value of strain e, the converse is not true. On the descending branch, additional
stress does negative work. i.e. dode < 0. Such a strain-softening behavior is unstable.

In case (e), on the other hand, the strain decreases as stress increases. Therefore,
the stress, o, can not be uniquely determined from the value of the strain. Since
dode <0, the material is again unstable. In the mechanical scheme, this case
contradicts the laws of thermodynamics because it allows “free” extraction of useful
work.

Example 3.1: Prove the uniqueness of solution from the first stability postulate
described above.

Proof: We shall again consider the two solutions (a) and (b) discussed at the
beginning of Section 3.3.1. The “difference” state of stress (dg;, — do) may be
considered as applied by an external agency which produces the corresponding
strain (dejff—de:}). The fundamental stability postulate, inequality (3.58). then
becomes:

(do3 —dofy)(del, — de,) >0 (3.62)

1P
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o o a
do do do
de
7 va -
€ € €
(a) (b) (c)
a o
(de >0,d0 <0) (de<0,do>0)
d do
// de de
€ €
(d) {e)

Fig. 3.2. Stable and unstable stress-strain curves for elastic materials. (a), (b), (¢) Stable materials,
da de > 0. (d). (¢) Unstable materials, do de < 0.

that is, the integrand in Eq. (3.52) is always positive. Therefore. the integral of Eg.
(3.52) can be zero if and only if the integrand is identically zero at each point in the
body. Thus:

5 T H b _
(dof—do))(de!, — de, ) =0 (3.63)
which is satisfied when either do, = do,} or de, = de}’,. However, for stable elastic
materials, the state of stress (or strain) is wniguely determined by the state of strain
(or stress). Hence do/, = dof} implies that de}, = de;’,. and uniqueness of solution is
guaranteed.

The uniqueness proved above is in an incremental sense (uniqueness in small) for
elastic materials which satisfy Drucker’s stability postulate. It has been shown that
the changes in the stress and strain fields. corresponding to incremental changes in
the applied loads and imposed displacements, are uniquely determined, provided
that the current existing values such as loads, displacements, stresses, and strains are
known. After the application of the increment, the existing values are updated, and
another incremental problem is then solved. By solving a succession of incremental
loading problems, therefore, one can determine the response of the material body to
finite load changes. Thus, uniqueness in small entails uniqueness in large, since each
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incremental step produces a unique solution. Separate proof of uniqueness in large
may be established for path-independent elastic stable materials. However, the
proof outlined here for stability in small is more general and can be easily extended
for path-dependent constitutive models such as plasticity models and incremental
stress-strain relations in Chapters 4 through 6.

Comments: Tt should be noted here that the uniqueness proof established before
arises partly because of the linearity of the equilibrium and strain-displacement
relations, Egs. (2.88) and (2.90), and partly because of the material stability
postulates. It is convenient, then, to distinguish between geometric stability and
material stability. Uniqueness may be lost in a real structure because the equilibrium
and kinematic equations are not in general linear. The most common example is the
buckling phenomenon of structural elements as a result of geometry changes leading
to nonlinear equilibrium equations. On the other hand, linear equilibrium and
kinematic equations may be applicable in the considered structure, but the material
may not be intrinsically stable, and as a result the solution becomes nonunique.
Materials such as concrete and some soils under certain conditions (e.g.. in the
strain-softening range) are examples for such behavior. One consequence of the
assumptions such as material stability postulate and linearity of the equilibrium and
kinematic equations is that the solutions obtained from these assumptions are
always stable and unique. This avoids many difficulties that might otherwise be
encountered in the numerical computations.

3.3.4 Restrictions—normality and convexity

As discussed in the previous Section, the second stability postulate requires that
the constitutive relations for elastic materials be always of hyperelastic (or Green)
type written as Egs. (3.24) and (3.33). Moreover, these relations must satisfy the first
stability postulate in Eq. (3.58) which imposes additional conditions on the general
form of the constitutive equations.

By differentiating constitutive relations of Eq. (3.24), the incremental stress
components do,, can be expressed in terms of the incremental strains de,,, that is:

da,, 3w
dc,’,—-a—ezdfﬂ—ge‘—)a—ekjdﬁk, (364)

Substituting for do,, from this equation into the first stability condition of Eq.
(3.58), we obtain:

LRl

B—ETJB—E;dGU dEM>O (3653)

That is, the quadratic form (3*W /D¢, ,0¢4,) de, de,, must be positive definite for
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arbitrary values of the components de, . The inequality (3.65a) may be rewritten in
another convenient form as:

H, . de,, deg >0 (3.65b)
where H,,, is a fourth-order tensor given by:

3w

5 en (3.66)

Hrj.’\[:

As can be easily seen in Eq. (3.66), tensor H, ,, satisfies the symmetry conditions
(¢,, is symmetrical) such as H, ;= H,,, = H, ;. =H,, = Hy,, Hence, there will be
only 21 independent elements in H, .

Mathematically, the matrix of the components of H, ,, = BZW/aeuacM is known
as the Hessian matrix of the function W. When ¢, is expressed in a vector form with
six components such as [€;;, €55+ €3, Y12, Y23» Yl then the elements of the Hessian

matrix for W are written as:

'w W ' W a*w 0w

de, Jey0€0y 06065y Be 0y 0€0vay  Oeqydvy
*w *W ' W W

de3, Bepdey; ey  Oepndysy  dendyy
W W W W

de3; 0e330v712  O€x0va  dexadva

[H]= y , , (3.67)

W 0" W =W

Y 37120723 9v0va
Symmetric W (hld

Y% Y207
oW

L 87321 |

and condition (3.65b) requires that [ H] must be positive definite.
Alternatively, inequality (3.58) can be written in terms of {2 and o,,. Thus. we
finally get:

H/, do,; do,>0 (3.68)
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where

3’2

da,,doy,

4 —
ikl ™

(3.69)

and the elements of the Hessian matrix [ 4] for £ are exactly of the same form as

that for W in Eq. (3.67) with W. e and y being replaced by £, o, and 7.

respectively.

The restrictions imposed by Drucker’s material stability postulate and their
implications are summarized as follows:

1. The strain energy and complementary energy density functions W and £ exist
and are always positive definite. This follows directly from the positive definite-
ness character of their Hessian matrices, [//] and [H ], respectively, and agrees
with the requirement of the laws of thermodynamics.

2. Furthermore, the positive definiteness of [H] and [H'] assures that a unique
inverse of the constitutive relations always exists. That is, for any constitutive law
o, = F(e,,) based on an assumed function for W, a unique inverse relation
e,,=F'(0,,) can always be obtained.

3. The stress tensor or strain tensor is respectively normal to the convex surface
corresponding to constant W or £ in strain or stress space.

The normality and convexiry conditions are discussed in the following.

Normality

Equation (3.33) implies the normality condition that the total strain tensor €, is
outward normal Lo the surface of constant £ at a given point o,,. In Fig. 3.3, for
example, the surface £2 = constant is illustrated symbolically in the nine-dimensional
stress space. The stale of stress o, is represented by a point in this space. The
components ¢, . corresponding to stresses o,,. are plotted as a free vector in the

£

d

[

Surface of const. 2

Fig. 3.3. Normality of ¢,, to the surface £ = const. in the general nine-dimensional stress space.
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stress space (with €, as the component in the o, direction, etc.) with its origin at
the stress point g, ,.

Normality provides a very strong and significant restriction on the possible form
of the stress-strain relations. Suppose, as an example, that the complementary
energy density function 2 is a function of J, alone: £ = 2(J,). Then, based on the
normality relation (3.33), we have:

A
“7 3o, A, do,,

= s, (3.70)

which indicates that the volumetric strain ¢, = ¢, is always zero in such case.

Oz

(@, G,)

()

\.Q= Const,
(a)
T3z
€0
Tt €44
(T, G5
T
L/ \ﬂ o

(b)
Fig. 3.4. Normality in two-dimensional stress subspaces for an isotropic linear elastic material. (a)
Combined tension a;; and shear ¢,. (b) Biaxial tension gy, and ,,.
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Because of the symmetry of o, and e, . it is just permissible (and more
convenient) to work in a six-dimensional stress space 0,1, 3. 033, 013, 023, and o3,
with the normal strain vector representing €,,, €5, €33 Y12. Y23. and vy as in the full
nine-dimensional space. In such a case, the normality conditions give:

af2 982

€ =t‘ —
11 By, Yiz do,,

(3.71)

in which £ is expressed in terms of the six independent stress components. Of
course. much of the time we deal with fewer nonzero components of stress and a
subspace of the six-dimensional space is used. For instance, combined tension oy,
and shear o, (=0,;), and biaxial tension oy, and o,,, are represented in the
two-dimensional subspaces (a,;. 0,,) and (oy;, 0,,). respectively, as shown in Fig.
3.4 for an isotropic linear elastic material. Similarly, normality condition can be said
for Eq. (3.24).

Convexity

Here, a pictorial proof of convexity based on the stability and normality
definitions is described below.

Consider any existing states of stress and strain o, and ¢, with the corre-
sponding surface (o) = constant. Assume that this surface is nonconvex, as
shown in Fig. 3.5. Then, it is always possible to reach a state of stress o> on the

same surface £(o,)=constant by adding the stress set Ag,, to o along a
straight-line path which lies outside the surface. Stability postulate requires that the
net work done by the added stress set on the resulting strain changes be positive;
that is:

b

U”(cu—q' ) dag,, >0 (3.72)

Al J
a

which can be rewritten as:

% d U .8 2 Ag >0 3.73
L El} U'] fL €fj Uff = E!,‘ 0’.’" > (‘ '7 )

The first two lerms give SZ(crf}) — (o) =0, since the two states o, and o,‘; lie on
the same surface of constant £2. Therefore, inequality (3.73) reduces to:

¢! Ag,, <0 (3.74)

that is, the angle between the two vectors ¢, (normal to the surface {2 = constant at
6/) and Ao, must be obtuse for all of and Ac,,. However, if the surface is
nonconvex, as assumed, one can always find a vector Ao, at an acute angle to the
vector €] (such as Ao,, in Fig. 3.5 with & less than 90°), in which case €;,40,, >0

and inequality (3.74) is violated. Therefore, the surface = constant must be
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8 : Acule angle, AC;, €5> )

Nonconvex surface .Q(O?ja) = const.

Fig. 3.5. Normality of the surface 2 = const. without convexity.

convex; and in this case all the possible vectors Ag,, lie inside the surface satisfying
inequality (3.74).

3.4 LINEAR ELASTIC STRESS-STRAIN RELATIONS
3.4.1 Generalized Hooke’s law

Assuming the initial strain-free state corresponds to an initial stress-free state.
that is, B, = 0. then Eq. (3.1) reduces to:

0;; = Cypr€ (3.73)
Equation (3.75) is the simplest generalization of the linear dependence of stress on
strain observed in the familiar Hooke’s experiment in a simple tension test and is
often referred to as the generalized Hooke’s law.

Since both stress o,, and strain ¢, are second-order tensors, it follows that C, ;,
is«a fourth-order tensor which consists of (3)* = 81 material constants. From o,, = 0,
and ¢, =¢,, the number of 8] material constants is reduced to 36 under the
symmetric conditions of C, ;= Cy= C, ;= C,u- Further. for a Green elastic
- material that requires an energy conservation, additional restrictions on C, ,, are
required. This is shown in the following. Expanding the strain energy density
function W(e,,) in a polynomial form and keeping only second-order terms, we
have:

W=cy+a,e,+ B e e (3.76)

L R ¥}
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where ¢,. ,,, and B, ,, are constants. Employing Eq. (3.24), the stress tensor o, can
be written as:

U;_/=IXU+ (ﬁ:_;kl+ﬁk!¢71)€f‘f (377)

Assuming the initial strain-free state corresponding to an initial stress-[ree state, i.e.,
@, = 0, we have:

g, = (ﬁ:_;u‘*‘ﬁu.j)fm (3.78)
Comparing Eq. (3.78) with Eq. (3.75). the response constants C,,, can be written as:
Cou= B B, (3.79)

This relation requires that for a Green elastic material. the order of the pairs of
subscripts (i) and (k/) can be interchanged, i.e.:
Cunewny = Ceknin (3.80)
As a result. the number of material constant needed for a linearly elastic material
becomes 21. The material consisting of such 21 material constants is called linearly
anisotropic material. Using the six stress components (o, 03, 033, @13, 023, O3;) and
six strain components (€. €23, €33. Y12+ Y23. Yar) the general matrix form of the
stress-strain relation for a linearly anisotropic elastic material is written as:

01 AC“ C. Cnn Gy G5 G ffen

033 G Gy Gy Gy Gy || €x

o3| _ Ca Gy G Gy | €3 (3.81)
O Cu G Ga || 102 h
O3 Symmetric Gss  Gse || s

03 L Cs BRRAS

If there are additional symmetries existed in the material. these 21 independent
constants can be further reduced. This is illustrated in the forthcoming,.

3.4.2 A plane of symmetry

A material with a plane of symmetry requires that the elastic property is
unchanged under 180-degree rotation about one of the coordinate axes x;, x», and
x; which are taken inside a material. Figure 3.6 shows the coordinate axes x;, x,,
and x, where the relation between stress components and strain components is
defined by utilizing Eq. (3.81). We now define a new coordinate axes %1 5. ANd X5
in order to take into account a plane of symmetry with respect to the x,-xy-plane, as
shown in Fig. 3.6. Stress tensor o,* and strain tensor € transformed into the new



x3,x3

X, sXj

Xy

Fig. 3.6. A plane of symmeltry aboul x,-xj-plane.

coordinate system are expressed in terms of the stresses o,, and strains €, in (x,.
Xy, X3) coordinate axes, that is:

U;T = !JIc!JIUA.’ (3823)
e =l (3.82b)

where /,, represents the cosines of the angles between the x; and x, axes for / and
ranging in values from 1 to 3. The tensor /,, is now written in the matrix form as:

~f O 0
b=l D 1 0 (3.83)
0 0 1

Substituting Eq. (3.83) into Eq. (3.82). stress tensor ¢ and strain tensor €
transformed into the new coordinate become in a matrix form:

0y 012 O3

o =] " 022 023 (3.84a)
— O3 032 033
€1 T€2 T

ef=| —€u 353 €23 (3.84b)
€3 €312 €33

Stress tensor ¢% and strain tensor € should be in a relation of Eq. (3.75). that is:

o = C el (3.85)
Thus, the following coefficients in Eg. (3.81) should be zero:

Cry=Cip=Coq=C6= Cay= Csp = Cis = G54 =0 (3.86)
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The 21 material constants are now reduced to 13. The general matrix form of a
linearly elastic material with a plane of symmetry is thus written as:

I3 Chn Cin Ci 0 Cis 0| €11
032 Cyy  Cu 0 Gas 0 €22
g3z Caa 0 Cis 0 €33 (3.87)
a2 Caa 0 Cae || 112
033 Symmetric G5 U Ya3
031 \‘ Cos | \ 731

3.4.3 Two planes of symmetry ( orthotropic synmetry)

In addition to a plane of symmetry about x,-xy-plane, consider the case of a
plane of symmetry about x,-x;-plane as shown in Fig. 3.7. A similar procedure to
that of one plane of symmetry is taken by utilizing the following transformation
tensor /, ;!

1 0 0
l,=|lo -1 0 (3.88)
0 0 1

The stress tensor ¢ and the strain tensor €% transformed into the new
coordinate system {x;, x3, x3) are respectively written as:

XS 'X3

Xg

Xq 1%y

Fig. 3.7. A plane of symmetry about x;-x3-plane.
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O —O0p Oy3

o¥=| "0 Oy  — 0y {3.89a)
O3~ O3 033
€1 T€n2 €13

=] "n €22 T (3.89b)
€1 T€x €33

Using Egs. (3.89) and (3.87), it is found that C,; = C,5 = Cy5= C,, =0. Thus, the
material constants are reduced to 9. The two planes of symmetry implies also the
symmetry about the third orthogonal plane (called orthotropic symmeiry), and the
number of material constants for a linear elastic orthotropic material is nine,

The general matrix form of such a material is expressed as:

on |—C11 C Gy 0 0 0 €1

072 Cpn Cu O 0 0 €22

BN Gy 0 0 0 €33 (3.90)
05 Cy O 0 Y12 )
033 Symmetric Gs 0 Y23

O3 B Ceo |\ Va1

3.4.4 Transverse and cubic isotropies

In the case of a transversely isotropic material, the material exhibits a rotationally
elastic symmetry about one of the coordinate axes, x,. x,, and x;,. Figure 3.8 shows

X3 X3

Fig. 3.8. Transverse isotropy.



86

the coordinate system corresponding to the transverse isotropy of material about the
coordinate axis x;. Transformation tensor /,, is given by:

cosf sind O
l,,=| —sinf cos@ 0O (3.91)
0 0 1

In a similar manner to the previous cases, 0% and ¢ are obtained, and material
constants have the following relationship such as:

Ci1=Cn. Cn= Coy, Cu= ]E(Cn —Cypy), and Cis= Gy (3.92)

Thus. the matrix form of a transversely isotropic material with five constants can be
written as:

911 C, Cn Cn 0 0 0 €
032 Gy G 0 0 0 €22
033 _ Cis o 0 ] 0 0 €23 (3'93)
O12 1(Cy — Cha) 0 0 Y1z
O3 Symmetric Cys O Yo3
O3 L Gss |\ 75

For a linearly elastic material with cubic symmetry for which the properties along
the x,, x,, and x, direclions are identical, we can not distinguish between directions
x,. x,. and x, as shown in Fig. 3.9. It follows that the cubic symmetric material has
only three independent material constants. The matrix form of the stress-strain
relation can be expressed as:

o1 Cn Cn Cn 0 0 0 €11

O3 Cy Cpp 0 0 0 €22

@izl ST 0 0 1) e (3.94)
015 Cw O 0 Y12 N
031 Symmetric Cy O Y21

03 i Ciy Ta

3.4.5 Full isotropy

For a material whose elastic properties are not a function of direction at all, only
two independent elastic material constants are sufficient to describe its behavior
completely. This material is called isotropic linear elastic. The stress-strain relation-
ship for this material is thus written as an extension of that of a transversely
isotropic malerial, i.e.:

-

e
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Szon X:,J, X5 ,X%
*2 s 1

X0 Xy Xy, X3

Fig. 3.9. Cubic isotropy.
011 7Cn Cn, Cn 0 0 0 €11
O3 Chy Con 0 0 0 €1n
O35 Cu 0 0 0 €12
on( 3(C— () 0 0 Y12

1 —C 0
023 Symmetric 2(Cn = ) 1 Y23
O3 L 2’(C11*C12)_ Y
(3.95)

Replacing C,, and (C,, — C,,) respectively by A and p which are called Lamé’s
constants, Eq. (3.95) is rewritten as:

o) [ A+ 20 A A 0 0 0]fe,
0ys At 2p A 0 0 0f]|esp,
ol _ A+2n 0 0 0 ()€ (3.96)
¥ poo 00 (v
oy Symmetric w0 ] yas
O3y L [ RS

3.5 ISOTROPIC LINEAR ELASTIC STRESS-STRAIN RELATIONS

In this Section, the tensor forms of isotropic linear stress-strain relations are
shown, and the physical meaning of Lamé’s constants A and p is explained from
simple tests under simple states of stresses. Subsequently, the matrix forms of
isotropic linear elastic stress-strain relations which are suitable for a direct use in
stress analysis are given for various cases such as the three-dimensional, plane stress,
plane strain, and axisymmetric conditions.
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3.5.1 Tensor forms

The general form of the isotropic elastic tensor C,,, in Eq. (3.96) can be
expressed in terms of the isotropic tensors:

Cour=A8;, 8+ (8,8, +8,8,) (3.97)
and substitution of Eq. (3.97) into Eq. (3.75) yields the following tensorial form:
J,’,=2;AE,J,+7\€“6U (3.98)

where €,, is an elastic volumetric strain, i.e.. €, = €;; + €2 + €35 The volumetric
strain €,, is given by setting a tensorial index, i =/. then:

_ ki
€rr = 3A+ 2” (399)

where o, is the sum of three normal stress components, i.e.. 0, = 0y, ¥ 03 + 035
Substituting Eq. (3.99) into Eq. (3.98) and solving for € . we find:

A
€= —0’“\6,_!4‘

- 31
Y 2u(3A+2p) (3.300)

1
2%
It can be understood from both Egs. (3.98) and (3.100) that the principal directions
of stress and strain coincide. The Lamé’s constants A and p are determined from

simple tests corresponding to simple states of stresses. Some of these tests suitable
for soil materials are as follows:

Hydrostatic pressure test (Fig. 3.10a): If o,, = 0,9,, where o, is the hydrostatic
pressure, the ratio of the pressure o, to the change in volumetric strain, €, 18
defined as the bulk modulus K. From Eq. (3.99). it can easily be expressed as:

o
K=-L]=)\+%p. (3.101)
€k

Simple compression test (Fig. 3.10b): In this case. only a compressive stress o)
exists and the others are zero. Fquation (3.98) can be expressed as:
0, = 2pey; +Aeyy (3.102a)
0=2pe,, + Aeyy (3.102b)

0=2pes; + Aeyy, (3.102¢)
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Using the above equations, the ratio of o, /¢,,. defined as the Young's modulus E, is
given by:

._ o _ p(3A+2p)
e (3.103)

On the other hand, the ratio of the fractional expansion €,, to the linear strain ;.
defined as the Poisson’s ratio », is given by:

€ €33 A

S L LS. . B 3.104
€11 €11 2()\*.”*) ( )

v= -

(o
" Tz T4

9

:‘9

(a) (b)

021 =01z

3
Vi = 26,5 1

(c) (d)

Fig. 3.10. Behavior of isotropic linear elastic material in simple tests. (a) Hydrostatic compression test
{0y, = @23 = 033 = p). (b) Simple compression test. (c) Pure shear test. (d) Uniaxial strain test.
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Pure shear test (Fig. 3.10c): Only a shear stress o0, = 0y is not zero. The ratio
0,2/2€,> OF 0,5/Y1, defined as the shear modulus G. is written from Eq. (3.98) as:

G=pn (3.105)

Uniaxial strain test (Fig. 3.10d): This test is performed by applying a uniaxial
stress component o, in the axial direction of a cylindrical test sample so that the
lateral surface is restrained against lateral movement. Consequently, in this case an
axial strain €, is the only nonvanishing component. The ratio between o, and ¢y,
defined as the constrained modulus, M, is given from Eq. (3.98) by:

o, = Ae, + 2pey (3.106a)
or

M= DL X4 2 (3.106b)

€1

By knowing these relationships, any one of the elastic constants E. », K, A, por M
can be expressed in terms of any other two of the constants. In particular, the
following relationships for soil parameters are trequently used in the mathematical
modeling of a linear isotropic elastic material:

E E
Kee—e——\ G=or— 3.107:
o1~ 2] 21 +7) (B:107%)
or
9KG 3K - 2G —

mest U dokrd®

For real elastic materials. experiments have shown that the material constants E.
G. and K are always positive, that 1s:

E>0. G>0, and K>0 (3.108)

These conditions imply that, for example, a uniaxial tensile stress causes an
extension of the material in the same direction. Similarly. a shear strain caused by a
simple shear stress has the same direction of the shear stress. From the inequallies in
Eq. (3.108) and the relationship (3.107a), we note the following restriction imposed
on the Poisson’s ratio »:

=) pgid (3.109)

Al present, we have no practical experience for any existing material that will
exhibit a negative value of ».
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Example 3.2: Using the strain-displacement relation in Eq. (2.90) and the stress-strain
relations of an isotropic linear elastic material, show that the equations of equi-
librium, Eq. (2.88), can be written in the following form (these equations are known
as Navier’s displacement equations):

1 ¥

o+ = =0 (3.110)

Uf"h’+ 1—2p i G

in which u,, », and G are displacement components, Poisson’s ratio, and shear
modulus, respectively.

Solutions: Substituting the strain-displacement relations in Eq. (2.90). ¢,, = }(1,., +
u,,,), into stress-strain relations in Eq. (3.98), we have:

o,=0,=plu,., +u.)+Au. 8, (3.111)
Differentiation of the above equation with respect to the x -coordinate axis leads to:

8 =l ) H AU 8= Bl YA+ AU, (3.112)

Fioif +Il’,

1 2y

since u,.;,0,, = u,,,,. Substitution of Eq, (3.112) into equations of equilibrium
yields:

plo. +u., )+ Ay, +F=0 (3.113a)
or
ploy o bty ) FRa, 4 F=0 (3.113b)

since #,y;; =ty and g, = g

Further substitution of A =2pp/(1 —2r) from Eq. (3.104) and p=G gives
Navier’s displacement equations, that is:
1 F

l_zpt{j.“-l- G =0

Upoi

Example 3.3: Show that the first-order isotropic formulation of the Cauchy elastic
model and hyperelastic model gives the identical stress-strain relations to those in
Eq. (3.98).

Solutions:

First-order Cauchy elastic model. In order for Eq. (3.4) to be first-order (linear)
elastic stress-strain relation, A, is a linear [unction of the first strain invariant /.
A, is constant, and A, is zero. Thus, Eq. (3.4) can be written as:

o, = ayb,, +a; [{8,, + as,, (3.114)
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where a,, a;, and a, are material constants. If the initial strain-free state corre-
sponds to an initial stress-free state, Eq. (3.114) becomes:

Uﬁj:a]I{Su + g€, (3.115)

Replacing respectively e; and a, by A and 2p leads to the identical forms to Eg.
(3.98) for an isotropic linear elastic material.

First-order hyperelastic (Green) model. In order for Eq. (3.28) to present the first-order
stress-strain relation, the strain energy density function W needs to keep all
quadratic terms in strains. Assuming again that the initial strain-free state corre-
sponds to an initial stress-[ree state, the function W can be written as:

W= 81"+ B,1; (3.116)

where 8, and B, are material constants. Substituting Eq. (3.116) into Eq. (3.28), we
find: :

_ 3(.81]1’2'*'/32?2’) 5 8(3111’2 + Bz-;f) + 8(3111,2 + ﬁzjz’)
W ory Y ol; " ol

LA

=2.8'1]1,6”+182€1J (3.117)

Replacing respectively 8, and 8, by A/2 and 2y, then, we have again the identical

expressions to Eq. (3.98).

Example 3.4: Show that for an isotropic linear elastic material the hydrostatic stress

and deviatoric stress respectively cause the volumetric strain and devatoric strain.

Solutions: Using Eqs. (3.103) through (3.105), the strain-stress relation in Eq. (3.100)

can be written as:
1 v

— — 0,8

H= g T E (3.118)

€ Z
A neat and logical separation exists between the hydrostatic response and the
deviatoric response. Substitution of (s, + t0,,8,,) for o,, and (e, + 1€,,8,,) for ¢,

into Eq. (3.118) leads to:

1 1—2r
e;,;+ %ekkS,J= %SU—+ 3—Eo“8,_l (3.119)
Thus, we find the following relationships:
1
€,J= ESU (3120)
3(1—2» 1
€AL:4(E_)Gm:EUm (3121)

where o, is 10,,-
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Equations (3.120) and (3.121) indicate that the distortion ¢, is produced by the
stress deviations s, , and that the volumetric change €, or €, is produced by the
mean normal stress o.. Bach is independent of the other. Consequently. the
stress-strain relationships can be expressed in a simple form of K and G:

1

1 .
= 2G5 . 9K O ey (3.122)

€

o, =2Ge,; + Key 8, (3.123)

3.5.2 Three-dimensional matrix forms

Replacing Lamé’s material constants A and p in Eq. (3.96) by Young’s modulus
E and Poisson’s ratio », the stress-strain relations for the three-dimensional case can
be written in the following matrix form:

11
022
2 B
Oz (1+2)(1—2»r)
023
O3
[1-» v v 0 0 0 !
1—v» v 0 0 0
11— 0 0 0 11
1-2 €22
a-2v) 0 0 o
X 2 g (3.124)
. . (1-2v) 2
ymmetric 3 0 Y23
i
(1-2»)
i 2

where it should be noted that the strain components consist of the engineering shear
strains. Substituting Eq. (3.107b) into Eq. (3.124), we have an alternative form:

on | (K'*'%G) (K*%G) (K_%G) 0 0 0 |fen
Tss (K+3G) (K=3G) 0 0 0 ||exn
Oa3 ) = (K+35G) 0 0 0 | e (3.125)
012 G 0 0 |fv
O3 Symmetric G 0 ||vn
031 . G1lyy
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3.5.3 Plane stress case

The three-dimensional stress-strain relations can be reduced to the two-dimen-
sional plane stress case as shown in Fig. 3.11a. The stress conditions are:

03, =03, =03 =0 (3.126)

Using Eq. (3.126). the expression in Eq. (3.124) can be reduced to the matrix form:

oy 1 v 0 €
o\ __E v 1 0 €2 (3.127)
— 1- )
Cia I=»"1o0 0 3 - Y2
or
fe” 1 1 —v 0 (U”
S R 1 0 ¢ 022 (3.128)
Y12 0 0 21 +w) [lop

Although in the plane stress case, we have:
€3 =€n=0 ory;3=yn=0 (3.129)

the component ¢, is non-zero and has the form given by:

v —
ﬁsaz_E(011+022)= 41,(511"‘522) (3.130)

It is clear from Eq. (3.130) that the normal strain €;; 1s a linear function of €;; and
€,, and for this reason it has not been included in Eq. (3.128).

3.5.4 Plane strain case

The plane strain condition is commonly found in an elongated body of constant
cross-section subjected to a uniform loading along its longitudinal axis (x;-axis in
Fig. 3.11b). The following conditions generally hold:

€ =€n=€ep=0 oryy =Yy =€3=0 (3.131)

In a similar manner to the case of the plane stress condition, the matrix form of Eq.
(3.124) can be reduced to:

o1y 1-v» v 0 €11
057 E 14 1—w 0 €90
nl B 2 (3.132)
g (1+»)(1-2¢)| ¢ 0 1 22V "
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L :
x
3—-——J

X4

(a) Plane Stress case

X2

X
X3 1
(b) Plane Strain case
¥2
%2
X 02-1
X3 1
33 (o)
1
%2

(c) Axisymmetric case

Fig. 3.11. Two-dimensional conditions. (a) Plane stress case. (b) Plane strain case. (¢} Axisymmetric case.
v
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while the stress components a5 and a4, are zero, and the stress component o,, has
the value:

043 =v( 0y, + 03;) (3.133)

3

Solving Eq. (3.132) for the strains, we have the inverse form:

€11 1+ 1—v» - 0770,
€ ) = E” —v 1-» 0|0y (3.134)
T2 0 0 2|\ op

3.5.5 Axisymmetric case

Analysis of the body of revolution under the axisymmetric loading is similar to
those of plane stress and plane strain cases since it is also a two-dimensional case.
The states of stress and strain can be completely defined by the two components of
displacements in any plane section of the body along its axis of symmetry. Referring
to Fig., 3.11c, there are in this case three strain components €;;. €. and vy, in the
xy-x,-plane, and one strain componenl ¢;; in the direction normal to the x;-x,-plane.
The matrix form can be written as:

oy 1—-v» v ¥ 0 €11
Oy, E v 1—w» v 0 €35
Oy o= | ¥ ¥ 1~ 0 €33 (3.135)
1+ )1 29) (1—29)
0'«12 0 O 0 - a Yl‘y
2 =
or
€11 1 = T 0 Oy
€l 1| —v 1 - 0 031
en( E|-v —v 1 0 O3 (3.136)
Y12 0 0 0 2(1+w)|\oy

3.6 ISOTROPIC NONLINEAR ELASTIC STRESS-STRAIN RELATIONS BASED ON TOTAL
FORMULATION

In this Section, various nonlinear elastic stress-strain relations based on rotal (or
secant) stress-strain formulations are presented in some details for nonlinear elastic
model with secant moduli, Cauchy elastic, and hyperelastic (or Green) models.
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3.6.1 Nonlinear elastic model with secant moduli

A simple extension of the linear elastic stress-strain relation with the elastic
material constants being replaced by scalar functions associated with either the
stress and /or the strain invariants will have the property of isotropy and reversibil-
ity. As an example, consider the linear form of Eq. (3.122) modified by replacing the
material constants K and G with K (I, J,. J;) and G(I,, J,, J;) which are
respectively secant bulk and secant shear modulus functions of the first stress
invariant [, the second and third deviatoric stress invariants, J,, and J;. Thus, we
have:

1 1

= +
7261, L ) 9K (T T 0y

G-AA'SI} (3.137)

There is, of course, a neat and logical separation between the mean response and the
deviatoric or shear response of the material, exactly as for the linear clastic material.
Specifically, we can write respectively as:

1
k™ ———)Uu

3.138:
3K, (L, ) s i3kl

1

_ _ 3.138b
T 261, 4y, &) (3.1386)

SU

However, unlike the linear elastic relations, Egs. (3.138a) and (3.138b) show that
there is an interaction between the two responses through the change in magnitude
of the invariants I;, J,, and J;. This implies that volume change ¢,, does not
depend solely on o,,. Similarly, distortion or shear deformation, e . does not
depend only on the stress deviation or shear stresses, s,,. They depend on each
other, and interact through the variation of the scalar functions G, and K.
Recently, stress-strain models based on this formulation have been extensively used
in nonlinear finite-element analysis for concrete and granular materials.

In principle, any scalar function of the stress and /or the strain invariants may be
used for the isotropic nonlinear elastic moduli. Obviously, the constitutive models
formulated on this basis are of the Cauchy elastic type. This formulation does not
imply that the strain energy density function ¥ and the complementary energy
density function £, calculated from such stress-strain relations, are path-indepen-
dent. Therefore, certain restrictions must be imposed on the chosen scalar functions
G, and K, in order to ensure the path-independence character of W and £2.
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Utilizing the stress-strain relations of Eq. (3.137), the expression of the comple-
mentary energy density function {2 can be written as:

ﬂlf
Q =f0 e, do,

j"u 1 4§ 1
= s
o | 2G,(11. 4. E) OK, (I, /. 1)

[ds,, + 1 da,,.8,,]

IS

G .R'Sij

1 1

Ja [\ 2
=fr = ___dLE d( 1,y 3.139
fo 2G.(1,, o B) fo 18K (Fy, K5 J) (5) ( )

where dJ, =s,, ds,, and d(J,)* = 21, d1,.

I order for the above function £ to be independent of stress path, the integrals
in Eq. (3.139) have to depend only on the current values of /, and J,, respectively.
Therefore, the bulk and shear moduli have ta be expressed as:

K=k L) orkK, =K (o) (3.140)
G.\—__G.\.(JZ) or G.\:Gh(’rucl) (3'141)

On the other hand, using Eq. (3.123) and the scalar functions K and G, which
are taken as functions of the three strain invariants 7;, J;, and J;, it can be shown
that the strain energy density function W is given by:

€

b
W= : o,; de,;

. foff'[zch(n’, B0 e, + KL, JY L T ) ed, | [de, + 4 dey8, |

2

_ f’fzc;s(/;, 55 dg + [Tk, JL 1) adT) (3.142)
0

0
in which dJy =e,, de,, and d(I)” = 21/d].
In a similar manner to the previous case, the strain path-independency of W can
always be satisfied if moduli K, and G, are expressed as:

K. =K/(I}) (3.143a)
G,=G(J) (3.143b)
or

K,=K,(eu) (3.144a)

G, =G Yo ) (3.144b)
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It should be noted that K, and G, must, of course, be positive. Consequently. the
integrals in Eq. (3.139) and (3.142) are always positive. This result confirms that W
and £ are always positive definite.

Example 3.5: Show the conditions under which W and & are path-independent,
when K, and G, are taken as functions of both /" and J, (or [} and J;).

Solutions: The strain energy density function W which consists of 7, and J; can be
expressed from Eq. (3.142) as:

“’ j'l’ ’ s a2
W:f[:"zq(n’, JZ')dJ;-fo VK (1. J)) A1) (3.145)

In order for the above expression to be strain-path-independent, each integrand in
Eq. (3.145) must have the following inregrability condition, that is:

o[26.(1. 7)) B[IK.(I, J)]

= 7 (3.146a)
v 2
3(1{) o
The relation in Eq. (3.146a) leads finally to:
G K,
2 9% 2% (3.146b)

1 A

On the other hand, the complementary energy density function £ can be written
from Eq. (3.139) as:

J 1 I, 1 )
Q=] —dJ, + —— da(5,) 3.147
f(, 26.(Fs ) fo 18K (44 1) (1) I

In a similar manner to the previous case, the integrability condition under which Eq.
(3.147) is stress-path independent is given by:

\eem) (o)

; = ( (3.148a)
8(1,) >
Equation (3.148a) can be rewritten in the form:
0G. I, dK
2 0% L ¢ (3.148b)

2 ey a1, - K’ d./,
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Example 3.6: Express the complementary energy density function 2 in terms of the
stress invariants /7, and J,, and the strain energy density function W in terms of the
strain invariants , and J5, for an isotropic linear elastic material.

Solutions: Replacing G (I, J,, J;) and K([}, /5. J3) in Eq. (3.139) by G and K
which are constant values, the complementary energy density function £ can be
writlen as:

g 1 21

1 5 1 2 le
2= 3 bTe dJ2+j(‘J ———18[{ d(]l) 4]0 Edfz'l' A 18K drl,

gy df
=56 + /K (3.149)

Similarly, the strain energy density function W in Eq. (3.142) can be written as:

W= fsz dJy + f;{%K d(r/) = fuﬂzG 4%+ foHKI{ i

=2GJ, + %K([{)g (3.150)

Noted that the first and second terms in Egs. (3.149) and (3.150) are respectively the
distortinal energy associated with the shear stresses or distortion and the dilation
energy associated with the hydrostatic pressure or volumetric change.

3.6.2 Cauchy elastic model

In the stress-strain relation (3.4), for example, we choose the response functions
Ay, A;. and A, to be functions of strain invariants, so that the stress lensor g,, can
be written as a second-order polynomial expression of strain invariants. Assuming
that the initial strain-free state corresponds to the initial stress-free state, these

functions are expressed as:

Ay=a I +a,[[* + asls (3.151a)
A =a,+asl] (3.151b)
A, =a, (3.151¢)

where a,, .... and a, are material constants.
Substituting Fgs. (3.151) into Eq. (3.4), we have the following second-order stress-
strain relationship given by:

g, = (all]' + arzll'2 + 01313')6,\j + (az+asl))e,, + age &, (3.152)
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As a special case, the second-order polynomial expression can be reduced to the
first-order expression (linear elastic stress-strain relation), that is:

o, =a {8, +aue (3.153
1 ) ¥

Therefore, the material constants a, and a, may take identical constants to
respectively A and 2p where A and p are Lamé’s constants [see Eq. (3.98)]. Thus,
Eq. (3.152) becomes:

o, = (?\]{ +a, 0+ a312')8,] + (2p+asl)e,, + aze €, (3.154a)
or using K and G
0, =[(K=3G)I) + ayI* + ay 3] 8, + (G + a1 )¢, + ageey, (3.154h)

Similarly. the inverse of the second-order form in Eq. (3.5) can be written as:

[ A > 1
€, = -— mll + by Iy + by, 6”—0— (E + bsfl)o,fﬂ- bﬁo,AGM (3.155a)
or

[2G - 3K 5 1
€= i 18GK ‘[1 + b?_Ilﬁ + b312]6r1+ (ﬁ + b5[1)ot_f+bfﬁaikgki (3155b)

The six material constants in Eq. (3.154) or (3.155) are determined from simple tests
corresponding o simple states of stresses. Some of model behaviors in tests for soil
materials are expressed as follows:

Hydrostatic pressure test: The components of stresses are g, = 0y, = 633 = 0 and
0,, = 0y = 03, = 0. For this case, the stress invariants I; and I, are respectively 30
and 3o?. Substitution of this condition into Eq. (3.155a) yields:

€17 = €32 = €3

= —Wyf\?‘m)30+9b202+31)302 + (ZL,U. Jr.'ibscr)0+bﬁo2

= §~}\Jlr—2'u~a + (9B, + 3b, + 3bs + by )o” (3.156a)
or
= €y Sy = %0+(9b2+3b3+3b5+bﬁ)02 (3.156b)
€= €3 =€3 =0 (3.156¢)
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The first term in Egs. (3.156a) and (3.156b) gives the linear relationship which is the
same as that of the first-order model and the second term shows the nonlinear
relationship which is usually observed in a test on soil materials.

Simple compression test: Only a compressive stress o, acts and the other stress
components are zero. The stress invariants J, and 7, for this case are respectively
o, and 0. Therefore, Eq. (3.155b) can be written as:

2G- 3K 5 1 .
€ = ﬁGTG“ + by + (ﬁ ersﬂn)f’n + b0
G4 IK ,
=g _ont (B b5+ bgan (3.157a)
2G - 3K
€2 =€~ “1ggr CU + by (3.157b)
€z =€ =€5 =0 (3.157¢)

As can be seen from Eqs. (3.157a) and (3.157b). the relationship between the stress
and the strain is nonlinear due to the second term. The coefficient (G + 3K )/9GK
in the first term of Eq. (3.157a) is identical to 1/E in the linear elastic model.

Simple shear test:  Only the shear stress o, =0, acts. In this case, the stress
invariants [, and I, are respectively zero and — 67,. Therefore, we have the
following relations from Eq. (3.155b):

€ = byls + b0y,0,5 = (B, — by) o (3.158a)
N L (3.158h)
éu= — byl (3.158¢)
€y = 2—15012 (3.158d)
e =€y =0 (3.158¢)

From Fgs. (3.158a) through (3.158¢), a volumetric change €, = (2h, — 3by)al, is
caused by the shear stress. This implies that there exists a nonlinear relationship
between shear stress and volumetric strain. On the other hand. the Tinear relation
between the shear stress and the shear strain as in the linear elastic model remains.
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Uniaxial strain test: An axial strain €, is the only nonvanishing component and
the other strain components are zero. Therefore, the strain invariants I, and 7, are
respectively €;; and 0. Substituting the above condition into Eq. (3.154b), we find:

011 = (K= 3G)ey + asxed, + (2G + ase; Ve + agei;

=(K+ 4$G)e; + (as +as +ag)ei (3.159a)
0 =0y= (K~ 3G)e; +axi (3.159b)
0y =0y =03 =0 (3.159¢)

The coefficient (K + 4G) in the first linear term of Eq. (3.159a) is the constrained
modufus M obtained in the linear elastic model. The relationship between each
normal stress and axial strain in the second-order elastic model is nonlinear.

3.6.3 Hyperelastic (Green) model

For the hyperelastic model in Eq. (3.28) to include the second-order expression of
strain, the strain energy density function W must include the third-order polynomial

as:
W=cy+ o I{ + ]2+ cadi + cg I + o 1T + ¢ 1 (3.160)

where ¢, ..., and ¢, are material constants.
Assuming the initial strain-free state corresponds to the initial stress-free state, that
is, ¢, = ¢, =0, then Eq. (3.160) reduces to:

W=t e *ed PP+ el ¢ 6. K (3.161)
Substitution of Eq. (3.161) into Eq. (3.28) leads to:

0, =(260) + 3c 0 + s I7) 8, + (3 + 51 e, + coe ey, (3.162)
As a special case, when the second-order terms are neglected, Eq. (3.162) reduces to
the linear relation:

0,=2c,0{8,, +cx,, (3.163)

As a result, the material constants ¢, and ¢y may be matched with the material
constants A and p or K and G in the linear elastic model, i.e.:

3K-2G

. (3.164a)

=~ orc,=

=%
cy=2p Ore;=2G (3.164b)



Finally, we have the second-order stress-strain relation written in the general form
as:

t
o, =|(K-3G)I + 3 002+ es T2 8, + (G + esI e, + Ctuy, (3.165)

In a similar manner, the inverse of the second-order stress-strain relation based on
the complementary energy density function { can be written from Eq. (3.37) as:

. = 1
I +3d,I7 + dsfz]ﬁu + (-4 + dsh) 0, +dq0,0, (3.166)

26 - 3K
€= 56

18GK

Note that the stress-strain relationships obtained from either the Cauchy formu-
lation or the hyperelastic formulation have a similar form to each other, except that
they are different in the number of material constants. The five material constants
in Eq. (3.165) or (3.166) are determined from simple tests corresponding to simple
states of stresses. Some of the model behavior in simple tests for soil materials can
be obtained in a similar manner to those of Cauchy elastic model described
previously.

3.7 ISOTROPIC NON LINEAR ELASTIC STRESS-STRAIN RELATIONS BASED ON INCREMEN-
TAL FORMULATION
In this Section, the incremental (or tangential) forms of stress-strain relations for
the nonlinear elastic model with secant moduli, Cauchy elastic. hyperelastic (Green),
and hypoelastic models are described.

3.7.1 Nonlinear elastic model with secant moduli

Consider the incremental nonlinear stress-strain relations based on the secant
moduli K, and G, that are respectively functions of €., and v, that is:

K, =K (ea) (3.167)
G'\": G’\(Ynct) (3'168)

Using these secant moduli, the mean response and the deviatoric response of soils
are treated separately as:

p=Keu (3.169a)
5, =2Ge,, (3.169b)
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Since €,; = 3¢, and p = 0, Eq. (3.169a) can be rewritten as:

OLI 3K‘-€OLI (3170)

On the other hand, taking the sum of the square for both sides of Eq. (3.169b). we
have:

Sy ”—4(?\:2'”8U (3.171)
Substituting the relations s,,s,, =352 and By = 3v2.. and taking a square root,
we find:

Tocl = G.s.l/uc[ (3.172)

The incremental forms of Egs. (3.170) and (3.172) are expressed as:

d
d g, oct d

('ILI

K,
I K +e ) de ., (3.173a)

et

dG,
A7 = | O+ Yo gy dYoer (3.173b)

U(.[
Equation (3.173) may be rewritten as:

do, (3.174a)

oct

= 3K, de

oct

d7, = G, dY,y (3.174b)

oct T

where K, and G, are defined as the rangent bulk and tangent shear moduli
respectively, i.e.:

dK,

K=K tewg— . (3.175a)
nLt
dG

G, =G, Yo gy : (3.175b)

L!Ll

The schematic relationships between K, and K., and G, and G, are shown in Fig.
3.12.
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OE?CI."S Toct

Ky (€5¢1) G Yoot

Ks(€g0t) GS{)’DctJ

' eoc:l Yoct

(a) {(b)

Fig. 3.12. Octahedral normal and shear stress-strain relations. (a) Octahedral normal stress-strain
relation. (b) Octahedral shear stress-strain relation.

The stress increment tensor do,, can be decomposed into the deviatoric and
hydrostatic parts, ds,, and dg,9,,. respectively:

de,, =ds,, +de,.5, (3.176)
From Eq. (3.174a). dg,. can be written as:
do, = 3K, de, = K de; = K8y, dey, (FeLIT)

On the other hand, the deviatoric stress increment ds,, can be obtained from Eq.
(3.169b) as:

dG,
ds, =2\e,3 - dy+ G dey, (3.178)

Solving for dG_/dy,,, from Eq. (3.175b), we have:

dG iy
S Sl (3.179)
d-YUL‘I YOL'[

Differentiating the relation y2, = ie,.e,, (see Chapter 2). we obtain:

IRty

(3.180)

d.YuCI =
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Substitution of Eqs. (3.179) and (3.180) into Eq. (3.178) and factoring de,, result in:

4(G,—G
ds,, =2|G8,.6, + —(—[——“)—e, e, | de, (3.181)
- . 3 Yj‘.‘[ '

iregs

Using the relationship between the total strain increment tensor de,, and the
deviatoric strain increment tensor de,,:

de, =de, — } de,,,8, = (8,8, — 18,8,,) dey, (3.182)

s rs mnry

Equation (3.181) can be wrilten as:

ds,, =2(G8,8,— 1G8,,8,,+ ne, e, ) deg (3.183)
where
4 G,— G,
n=3 - (3.184)
‘YOL‘[

Now, substituting Egs. (3.177) and (3.183) into Eq. (3.176), we obtain the
required incremental stress-strain relations (Murray, 1979):

K, G .
dg,, =2 (7 — ?)SUS,\,+ G308, +ne, ey |deg, (3.185)

which can be written in the matrix form as;

{do} =[C]{de} (3.1862)
where

{do} =[day;. doy . doys. doyy. doo. doy, 1" (3.186b)
(de} = [deyy, dess, dess. dypan dyay. dyay ]! (3.186¢)

and the material tangential stiffness matrix [C,] may be expressed as:

[C.]=[4]+[8] (3.187a)
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in which:
(« B B 0 0 0]

B a« B 0 0 O

BB o« 0 0 O
[41=10 0 0 6. 0 0 (3.187b)

0o 0 0 0 G 0

0 0 0 0 0 G]
[Bl=2n{e}{e}’ (3.187c¢)
where
a=K,+ 3G, (3.188a)
B=K, - 3G, (3.188b)
and {e}" is the transpose matrix of the deviatoric strain vector {e )i
{"}T= [en- ex. €335 €12, €23, €3] (3.189)

Note that the symmetric matrix [4] in Eq. (3.187b) has the same isotropic form
as that of Eq. (3.125) for an isotropic linear elastic material with K and G being
replaced by K, and G,, respectively. On the contrary, the matrix [ B8] is symmetric
but does not have such an isotropic form. The second-order values of the deviatoric
strains {e}{e}r in Eq. (3.187c) are offset by the value n which contains the
second-order strain y_, in Eq. (3.184), and thus the quotients are not necessarily
small with respect to unity. The numerical comparison of the relative magnitudes of
both matrices [ 4] and [ B] has been shown in some details in the book by Chen and
Saleeb (1982).

Owing to the path-independent behavior implied in the total stress-strain formu-
lation, the incremental form derived above represents the most restricted class of
hypoelastic stress-strain relations that are integrable.

2.7.2 Cauchy elastic model

Herein. an incremental form of the second-order stress-strain relations in Eq.
(3.4) is formulated. If Eq. (3.4) is differentiated, the stress increment tensor dg,, can
be written as:

aA() BGU aA[ a(einlﬁlﬁj) aA')
=|—"8, +A,— LA, —+ —= :
daj} [afkl 1} Al 861\! +€!,'a€'u A,_ aem, Etmem,raelﬂ’ dEAI (3 190)
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where de,, is the strain increment tensor, and 4,, 4,. and A, are elastic response
coefficients and they are polynomial functions of strain invariants, B diand. 15,
For the second-order model. these are again expressed from Eq. (3.151) as:

A(]:(K—%G)I1’+a2]1’2+a312’ (3.191a)
A, =2G + a5l (3.191b)
A, =a, (3.191c¢)

The partial derivatives in Eq. (3.190) are calculated using the above expressions for
Ay, Ay, and A, and the results are given by:

a4y

de. (K—3G)8,+2a,1{8;,+ ay(18,,— €) (3.192a)

ki

94

a—q—‘! = as8,, (3.192b)

04,

el (3.192¢)

de, .

gﬁ? = S,A,G}; (3192(:1)
y

a(emremj)

T :E.’,’Srk—‘re:ﬁ.ﬁﬂ (31928)

since [ = 2(J1{" — €; /€5 )-
Substituting Egs. (3.192a—e) into Eq. (3.190), we finally obtain:

dagy;= [(K* %G)SM‘SU"' 2“311,5A18:j+a3(11’5k1*fu)a.j

L
+(2G +asl])8,8, + ase, 8+ aq(e,0, + €48,)] ey, (3.193)
The above equation represents the incremental form of the second-order Cauchy
elastic constitutive model. In a similar manner to the previous model in Section

3.7.1, Eq. (3.193) can always be written in a matrix form as:

{d0}=[C‘]{dE} (3.194)



110

in which [C,] is an unsymmetrical tangential stiffness matrix and its value depends on
the current state of strain ¢,, and the material constants such as K. G. a,. das. as.

and a,.

As an example of Eq. (3.194), the matrix form representing the incremental

relations for a general three-dimensional case is given below:

daoy, Cy Cn G Cu G Gy |(dey

day, Cy Cn Cn Gy G5 O ||dex

doy; _ Cy Cpn Gy Gy Gy Cae des,

doy; N Co Cp Cua Cu Gs G dvyiz

day; Co Con Gy Gy Gy Gy f[|dras

day, Co Go Gy Gu Gs G |\dyn
where

C,=(K+1iG)+ (as+tay+a )]+ (—ay+as+2a,)eq
Cir=(K—3G)+ (2a, +a:) I + usey; — asexn

Cia=(K—3G)+ (2ay+ax) ] +ase; — asess

oy
z
I

=i(—as+a)v
Cis= — 30372
Cio=(—as+ag)ry
Cy = (K—3iG)+ (2a,+ a3} 1] —ax +asexn
Cp=(K+3G)+ (2a,+as+as)[{ + (—a;+as+2ag)exn

Cps= (K= 3G)+ (2a, + a3 )1 + ases — ases;

Coy = Ciy

Cos=1(—ay+ae) ¥

Cig= — Ja3yy

Co=(K—=3G)+ (2ay+ a3)I{ —azen + ases,

Ca= (K= 3G) + (2a, + ay)I{ —azesn + asey

(3.195)



(K+3G)+ (2ay+as+as) [y + (—as+as+2aq) €3

Gy =

Cag = 13Y1a

Ci =G

Coy =0

Cyh= i(as+ag)vs
C42 =y

Caiz= 345Y
Co=G+ Yad] + dage, + 1a,es,
Cys = %flﬂ’}.l

Cae = 204 Y2a

Coy = 3d5¥n

Cy = i(as+ag) v
Cia=Can

Csy = Cys

Css =G+ Yaol] + Jagepn + 10463
Coe = 106Y12

Ca = 2las+ag)vy
Coa = 20573

Coz = Ca

Cos = Caan

Cis = Css

1 ’ 1 1
Coo = G+ 5asly + 30,6, + 784€x

111

(3.196)
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3.7.3 Hyperelastic model

In a similar manner to the previous case, the incremental form of the second-order
hyperelastic model can be derived by differentiating Eq. (3.165). Thus, we have:
do = [{(K —3G)8 + 60,08, + cseyy } 8, +esbye,,

tr
£ (2G + Cs [1’)8:R6_ﬂ’ + (‘(\(Bme.",' + flkas’} )] dck! (3197)

Comparing Eq. (3.193) of the Cauchy elastic model with Eq. (3.197) of the
hyperelastic model, the matrix form of Eq. (3.194) for a three-dimensional case can
be readily obtained. Namely, replacing the material constants a5, a;, as. and a, in
Cauchy elastic model by:

Qa,+a, =6, (3.1982)
a5 = —¢ (3.198b)
as =cs (3.198¢)
@ = (¢ (3.198d)

We have the following matrix form where the tangential stiffness matrix is symmet-
ric:

doy; Cy Cn Ci Cu Gy Gy dey;
doy, Cyy Gy Gy G Gy || dexn
do c G C Cy | ] des
3| _ 13 34 s 36 33 (3.199)
dou Coo Cus  Cus dy,
dossy Symmetric Cs  Gse || d7as
day, i Ceo | L dya
where

Cpy = (K+3G) + (6¢4+cs) Iy + 2(cs + ¢ )eqy
Cia=(K—3G) +6c.0) +cs€qy + 05
Ciz=(K—3G) +6c,0] + s + 0563,
Cra=3(cs + ¢ )12

Cis= %Cs"}’:s

Cie= .}?(CSJrCﬁ)YBI



Ca =

Cos

1(es +¢) o

_ 1.
Gy = 20571

Can=

Cyy = %Cs?’lz
Cis = Cs
Cie = Cis
Cp=0G+

o s
Cys = 3CaT13

.
Cio = 3CaY2a

1 ’ 1 1
Css= G+ 3¢ 0] + 3¢5+ 3C€13

_ 1.
Coe = aCa Y12

,
G =G %(‘5[1 + %Cﬁcll + %Cﬁfﬂ

3.7.4 Hypoelastic model

31G) + (6c4+ ¢s) I + 2(cs + 0, )€

Cr=(K+
Coy=(K—3G) + 6c4d{ + cse + cs€3y
Cia
(K+3G)+ (60, + ¢s) Iy +2(cs + ¢ )€

T L s
205y F 200€1 T 2C€x

(3.200)

Here. the incremental stress-strain relation of the first-order hypoelastic model is

formulated. Defining the material coefficients A;. A,, ..., and 4;, in Eq. (3.48) by:
A =a, +al, (3.201a)
Ay =3{a,+as0y) (3.201h)
Ai=ud; (3.201¢)
A,=a, (3.2014)
A= 5l (3.201e)
A,=4.= =A,,=0 (3.201f)
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the general form of the tangential stiffness tensor C, ;, for the first-order hypoelastic
model can thus be written as:

C = (ay+asl;)s, 8, + ay+aq 0))(8,8,+8,38,) +asa,,b,
+ %aﬁ(smaﬂ' + 8:!0_”\ + S_JAU:I + 6_11'011’\ ) *h {17(11\16” (3202)

where @, to a, are material constants.
Substitution of Eq. (3.202) into Eq. (3.47) yields the following constitutive relations:

do,, = a, chSU +a, de,, + a5l de,\kS,J-F ayf, deu-f-ajou de,,
+ag(o, de, + o, de, ) +aq0,, degd,, (3.203)

The above relations in Eq. (3.203) represent the most general form of the first-order
hypoelastic constitutive law for an initially isotropic material. The material behavior
described by Eq. (3.203) revolves around the seven material constants a; to a;.
Note that if all material constants other than ¢, and a, are eliminated (zero-order
hypoelasticity), then the stress-strain relations in Eq. (3.203) reduce to those of the
generalized Hooke's law for an isotropic linear elastic material. with the additional
freedom that an initial stress can now be prescribed for the zero initial strain state.
Therefore, the material constants ¢, and «, might be written as:

ay,=K-3G (3.204a)

ay =20 (3.204b)

The matrix form of the incremental constitutive relation for the three-dimensional
case can be written as:

doy, Cy Cp Gy Gy Gs G |(dey
doy, Cy Cn Gy Gy Gs G || deaxn
day; _ C:_u C Gy Gy Gy Gy | deg (3.205)
doy, Co Cpn Cin Gy Gs Gy |)dm
doy; Co GCun G Gy Gy G ||dvas
doy | G Cea G Gu G G J dys

where the tangential stiffness matrix becomes unsymmetric and their components
are respectively given by:

Cp=(K+35G) +(as+as)l, + (as+2a,+a;)oy

Ci,=(K-3G)+ail, +ase, +a;05
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G (K — 3G) + a3, +asoq, +aq0y
Cia=(aq+a;) o1
Ci5=a;0n
Cio=(aq+a;)o3
Cy = (K—3G) +asl, + a0, + as0y
Cp=(K+3G) + (as+ay)], + (as+2a,+a;)on
Coy= (K- 3G) +asl, + as05 + a,05,

Ca=0Ci4

Cy = (K- 3G)+asl + a0, +asoy,
Cy=(K—3G) +asl, + a0+ as05;
Cyi=(K+4G)+ (as+a,)I, + (as+2a,+ a;) oy
Cyy=a40;;

Cis = Cys

Gy = G (3.206)
Cy = (as+ag)op,

C4z: Ca

Cy3=as0y,

Cay=G+ ya I + a,00, + 10,00

Cas = 14,03

Cie = 1a02

Cs1 = d503;



Coy = Cas

Cea = a503
Coz=Car
Cea= Cae
Cos = Css

Coo= G+ Tas i + tago), + 38403

Example 3.7: Consider the first-order isotropic hypoelastic model described by the
incremental stress-strain relation:

dﬁu= Cl;i\l(ers) dEk;’ (3‘207)
where the tangential stiffness tensor is given by:
Cowr= (by+by17)8,,8,,+ L(by+ by d{ (8,48, + ‘Sj.&-agf) + bse, 8,

it %b(s(e,u‘\ah ok Eﬂ6kl + el-’\an’j + Ef.faiv;) + b7€“8” (3208)
where by, by, ..., and b, are material constants and 7, is the first invariant of
strain tensor ¢, .
(a) Show that this incremental law provides a total stress-strain relationship when it

satisfies the integrability conditions:

aCui\‘l' _ aC;]mn

(3.209)

acmn aek:’

(b) Show that in order for the hypoelastic material described above to be Cauchy
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elastic, the integrability conditions in (a) give the following condition:
by=bs (3.210)

(c) Show that if the material behavior is required to be Green clastic (or hyperelas-
tic). the condition:

b = b, (3.211)

must be satisfied in addition to the condition given in (b).

(d) Using the two conditions given in (b) and (c), show that the incremental law may
be integrated to give the hyperelastic constitutive relations (assume initial stress-
and strain-free states):

0, = b I(8,, + by, + ¥boIV78, + bydie,, + boe ey + Shyeg €0, (3.212)

(e) Using the result obtained in (d), show that the strain energy density function, W,
is given by:
W=1b,1]7+ Ybse, €, + sy 1) + b IVe €, + Yhe e, € 4 (3.213)

(fy Derive the simple stress-strain relation in uniaxial strain test (€;, = €. all other
e, = 0) for the material described by the constitutive relations in (d).

Solutions:

(a) Integrability condition: Since stresses are single-valued continuous functions of
strains for the total stress-strain relations, we have the following incremental
stress-strain relations:

do,,
do

Yo dey,

dey, (3.214)

As the integrability conditions for Eq. (3.214), we must have:

do,, o,
e) 2w
aet’\l’ _ aemr! (2 2]5)

de  Se

ma

If the incremental stress-strain relation of the first-order hypoelastic model is taken
into consideration for this case, the above integrability conditions become:

aCﬂ,‘f\f aCumn
de,.,

dey,

nin
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(b) Tntegrability condition for the Cauchy elastic model: The left-hand side of Eqg.
(3.209) can be expressed as:

aC.';.’n’ i 1
T bZSmHBUSAI + 21)48!?117(6:A6;I + 6_,11\811‘) + ibﬁ(amxam + 8:1:6_;.'” ) 81.!

ael)“l

+ 1]1'1)(\(8/”16.'\:18!! + 6;:181\ ,,;6[, + 8;»161'1:8A1 + S_,lnafmsiu + 6111381\:16.’1 + 81:161\4'”8//
n

+8 81‘:18,'.; + 8{)48.’17181\ ,ﬁ) + .%b? ( 8!\1116[17 + 81\116.’1” )8!,' (3.216'&)

On the other hand. the right-hand side of Eq. (3.209) can be written as:

aCl T
ael = [JZS}\ISJ;Smn + %1)48;'\1'(6:1116,'1: + Bﬂnsrn) + Iibﬁ ( SMSH + 61.’811\ )(Snm
k! :

+ %bf\(a_jkam.‘a + 8,:.‘8):1.’\8 + 8,8 6 + ajian.i\(snu + 6,,\3””6,” + Bfisnmau,i

ni (i Al m

+8n’\6}r.’8 o 61.'6;118

"} ")

) e :l'fb'.'(ﬁmi\snf + a.lm'(suk )811 (3216b)

1t can be concluded from Egs. (3.216a) and (3.216b) that if b, = bs. the integrability
condition of Eqg. (3.209) is satisfied.

(c) Hyperelustic condition: For the stress-strain relations to satisfy the hyperelastic
condition, C, ;= Cy;, must hold. Comparison of C,,, with C;,,, leads to the
condition:

bs=b,

(d) Hyperelastic constitutive relations: Substituting hs = b, = b, into Eq. (3.208). and
integrating with respect to strains de,, lead to:

€5y i ’
o, = j{; [(51 +b,1{)8,,8,,+ 3(bs + by V(8,48 + 8,8.) + bae, Bi
+ 1bg (€8, + €00, Feudy, + €,0:,) + bsey )8, |deyy
14 ’ ’ g ’ I ’
:f (b +b17)8,, d1; +f (bﬁbﬂn)ole,,+f‘b4€”df1
0 0 0

€, €hr
+ [ b (deen, + e deg,) +f BieirBi; deg
0 0 ’

Utilizing I7de,, + d e, = d([]e, ;) and de; e, + ¢, de, , = d(e, €, ). we have:

.2 r
o, =by1{8,,+ b, + Yoo I8, + bydye, F bo€ e, T hacii€nsd,
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(e) Strain energy density function: From the definition of strain energy density, W~
L

W=f o, de,,
0

Ef{
- fo (b1178,, + by, + 1b:11%8,, + beI{e, + boe s, + Lbseried,;) de,,

¢

5 ’ o i 2 ’ € .
= ["p, 0 dr + [ b, de,, + [ ib, 00 dI +fb]el de
./(; 141 1 f(; 3%y J j(; 2524 1 o 4515y Iy

€ iy
1 ’
+j[‘) be€ ey, de,; + '/(; sbae, e, Al

. - 1 ’ 1 Pl 1 r _

Since e;;de;; =d(z€;€,), fie;de,; + z¢,€,,d)y = d(ze,5¢,,d1), and e, ,de;; =
1 :
d( e, € 4€,,), we have:

1 r2 1 1 +3 1 ’ 1
W= jb]]l -+ §b3€[J€,J+ 3b2I1 + jb4]1€‘.jfu+ 3b66,'(€”€',;\.

(f) Stress-strain relations in the uniaxial strain test: Substituting ¢, = ¢, and all other
€,,= 0 into the stress-strain relations obtained in (d), we have:

o1 = (by+ by)e+ (3b, + 3b, + by ) €* (3.217a)
01y =033 =bie+ (3by + 1hy )€ (3.217b)
0y = 03 =03 =0 (3.217¢)
3.8 SUMMARY

In this Chapter, the elasticity-based material models have been reviewed theoreti-
cally with respect to their applicability to geotechnical engineering problems, and
their stress-strain relations have been derived and put in suitable forms for direct
use in a numerical stress analysis. The elasticity-based models may be categorized as
total or incremental stress-strain formulations. A more detailed treatment of these
theories has been presented by Chen and Saleeb (1982). and Desai and Siriwardane
(1984). Based on the discussions presented in this Chapter, the essential points
concerning the characteristics, advantages, and limitations of elasticity-based con-
stitutive models can be summarized as follows:
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TOTAL ELASTIC STRESS-STRAIN RELATIONS
Cuauchy elastic type
General form:

a,=F (Emn) or E..‘}‘:F;;(Gﬁlﬂ)

i i

Characteristics

1. Stresses, o,,, and strains, €, , are reversible and path-independent.

2. Reversibility and path independency of strain energy and complementary energy
density functions, W and £, are nor in general guaranteed. That is, thermody-
namic laws may be violated since the models may generate energy for some
load-unload stress paths (not acceptable on physical grounds).

3. The material secant stiffness and compliance matrices are generally asymimetrical.

4. In general, when stresses are determined wniquely from strains or vice versa, the
converse is not necessarily true. In order lo satisfy thermodynamic laws and
unigueness of stresses and strains, additional conditions must be imposed.

5. The most commonly used models for this type are formulated by simple
modifications of the isotropic linear elastic stress-strain relations based on
variable secant moduli (e.g.. K_, and G ). Often. the material parameters in such
models have well-defined physical relations to the observed stress-strain behavior
of the material, and they can be easily determined from experimental data.

Hyperelastic (Green) type

General form:

_aw s

o =0 T or €
v afl,‘ & ao-

L

Characteristics

1. Stresses. o, ,, and strains, €, ,. are both reversible and path-independent.

2. These types of models satisfy the laws of thermodynamics since W and £ are
reversible and path independent.

3. Although the constitutive laws based on assumed functions W or £ have great
mathematical capabilities and different general relations can be derived. the
material constants involved have no direct physical interpretation in most cases.
Also. the procedure of determining these constants often requires complicated
testing programis.

4. Functional forms for W or £ can be easily assumed to reproduce the desired
physical phenomena of the behavior of materials, such as nonlinearity, dilatation
and cross effects, and stress- or strain-induced anisotropy.
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5. By imposing the restriction of convexity on the energy density functions W and
2, the uniqueness of stresses and strains in a general Green type of material is
always satisfied (Drucker’s stability postulate).

6. Material secant stiffness and compliance matrices are always synunetrical.

INCREMENTAL STRESS-STRAIN RELATIONS

Hypoelastic type

General forms:

do;, = CUM(UM) dey,

deg;, = C,_,,\.,(e{,q) de,,

df,, e D.‘m(qu) doy,

e, = D.jk.'(apq) doy,

where C,,, and D, are general functions of their indicated arguments.

Characteristics

1. The state of stress depends in general on the current state of strain as well as on
the stress path followed to reach this state (i.e., the behavior is parh-dependent).

2. The behavior is incrementally reversible (i.e., infinitesimal deformations in a
hypoelastic material under initial stresses are reversible).

3. Initial conditions must be prescribed to obtain unique solutions. Different stress
paths and initial conditions lead to different stress-strain relations.

4. In general, a hypoelastic model may violate laws of thermodynamics in some
load-unload cycles since it may generate energy.

5. The determination of the material constants in the classical hypoelastic models
requires complicated testing programs. Moreover, there is no obvious physical
relation between these constants and the established material properties. No
clearly defined relationship exists between the effect of varying any constant and
the resulting change in the stress-strain behavior of the material. The models are
difficult to fit to available test data.
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